Prospects for CP violation in $B_s \rightarrow J/\psi \phi$ from first LHCb data.

Roel Aaij

Nikhef, Amsterdam, on behalf of the LHCb collaboration

January 12th, 2010

B-Meson Mixing

- Neutral B mesons mix due to the presence of box diagrams.
- Described by an effective Hamiltonian.
- Solutions to the Schrödinger equations give two mass eigenstates: heavy and light.

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} |B_{s}(t)\rangle \\ |\overline{B}_{s}(t)\rangle \end{array} \right) = \left(\mathbf{M} - i\frac{\mathbf{\Gamma}}{2} \right) \left(\begin{array}{c} |B_{s}(t)\rangle \\ |\overline{B}_{s}(t)\rangle \end{array} \right)$$

• mass difference: Δm_s

• CDF: $17.7 \pm 0.07 \text{ps}^{-1}$

• decay width difference: $\Delta\Gamma_s$

• CDF: $0.075 \pm 0.045 \text{ps}^{-1}$

CP violation in $B_s \rightarrow J/\psi \phi$

- Both B_s and \overline{B}_s can decay to $J/\psi \phi$.
- This yields the possibility of time-dependent CP violation in the interference between mixing and decay.
- SM prediction:

• A_{CP} suppressed: $\sin(\phi_s^{J/\psi\phi}) = -0.04$

• Many models for new physics significantly enhance $\phi_s^{J/\psi\phi}$.

Challenges

- B_s system oscillates rapidly.
 - Requires very good proper-time resolution to resolve oscillations
- $B_s \rightarrow J/\psi \phi$ is a P \rightarrow VV decay
 - The final state is a mixure of CP-even and CP-odd states.
 - Angular analysis required to be able to statistically disentangle them.
- $\Delta \Gamma_s$ cannot be neglected.
 - Correlations between proper time and angular distributions.
- Flavour tagging required.
 - Hard in an hadronic environment.
 - Becomes harder with higher pile-up.

Luminosity and pile-up

- Luminosity reached $1.7 * 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- $\sim 37 \text{pb}^{-1}$ recorded.
- \$\mathcal{O}\$ (85%) of design luminosity with \$\mathcal{O}\$ (12%) of the bunches.
- $\sim 2 \text{ pp interactions per visible event.}$
- This is close to the foreseen values for the LHCb upgrade.

Luminosity and pile-up

- Luminosity reached $1.7 * 10^{32} \text{cm}^{-2} \text{s}^{-1}$
- $\sim 37 \text{pb}^{-1}$ recorded.
- \$\mathcal{O}\$ (85%) of design luminosity with \$\mathcal{O}\$ (12%) of the bunches.
- $\sim 2 \text{ pp interactions per visible event.}$
- This is close to the foreseen values for the LHCb upgrade.

LHCb

- Vertex Detector Vertex reconstruction Proper time measurement
- Tracker

Momentum resolution

RICH

 $K-\pi$ separation

Calorimeters

Energy mesurement $\pi^{\rm 0},~{\it e},~\gamma$ identification

• Muon detector µ identification

Event Display

Roel Aaij (Nikhef)

January 12th, 2010 8 / 16

Event Display

Roel Aaij (Nikhef)

January 12th, 2010 8 / 16

< 行

э

Overview

- Trigger and select $B_s
 ightarrow J\!/\psi\,\phi$ events
 - Take as large a fraction as possible without lifetime biases.
 - Include lifetime biased triggers for highest yield.
- Measure mass, proper time and angular distributions
- Tag initial flavour
 - Calibrate taggers using control channels $B^0 \rightarrow J/\psi \, K^*$, $B^+ \rightarrow J/\psi \, K^+$, $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}$, $B_s \rightarrow D_s^- \pi^+$
- Fit $\phi_s^{J/\psi\phi}$
 - Simultaneously fit differential decay rates for tagged and untagged signal and control samples.
 - Depends on 9 physics and > 15 detector parameters.

$$\frac{\mathrm{d}^{4}\Gamma(B_{s}\rightarrow J/\psi\,\phi)}{\mathrm{d}t\mathrm{d}\cos\theta\mathrm{d}\cos\psi}=f\left(\phi_{s},\Delta\Gamma_{s},\Gamma_{s},\Delta m_{s},A_{\perp}(0),A_{\parallel}(0),\delta_{\perp},\delta_{\parallel},M_{B_{s}}\right)$$

Trigger

- L0 hardware trigger.
 - Find high P_T leptons or hadrons.
 - Cut on multiplicity.
 - Max 1MHz output rate.
- Hlt1 software trigger.
 - Reconstruct vertices.
 - Find tracks with high IP and/or P_T
- Hlt2 software trigger.
 - Reconstruct full event.
 - Inclusive and exclusive selections.
 - 2kHz output rate.

Offline Selection

- Cut based selection, optimised for $S/\sqrt{S+B}$.
- No lifetime biases.
 - No cuts on IP, decay length, etc.
 - Significant prompt background: B/S ~ 3
 - Extrapolated yield:
 ~ 30k events per fb⁻¹
- Rely on kinematics and PID.
- Full yield available only if lifetime-biased triggers included.

Offline Selection

- Cut based selection, optimised for $S/\sqrt{S+B}$.
- No lifetime biases.
 - No cuts on IP, decay length, etc.
 - Significant prompt background: B/S ~ 3
 - Extrapolated yield:
 ~ 30k events per fb⁻¹
- Rely on kinematics and PID.
- Full yield available only if lifetime-biased triggers included.

Observables

- Excellent tracking performance.
- Excellent mass resolutions.
- Good proper time resolution 38fs MC, \sim 30% worse in data.
- Detector acceptance distorts angular distributions, O(8%).
 - Corrected using MC, verified with $B^0 \rightarrow J/\psi K^*$.

Tagging Introduction

- Initial flavour of B_s mesons must be determined (tagged).
- Use charge of leptons or hadrons from the decay of the other B meson: opposite-side tagging.
- Use charge of kaon produced in the fragmentation: same-side tagging.
- Analysis requires precise knowledge of:
 - Tagging efficiency: ϵ
 - Mistag rate: ω .
- Control channels required.

- Use self-tagging control channels to calibrate tagging.
- Opposite-side tagging:
 - Fit time evolution in $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}.$

- Use self-tagging control channels to calibrate tagging.
- Opposite-side tagging:
 - Fit time evolution in $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}.$
 - Count correctly/mis-tagged events in $B^+ \rightarrow J/\psi K^+$.

- Use self-tagging control channels to calibrate tagging.
- Opposite-side tagging:
 - Fit time evolution in $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}.$
 - Count correctly/mis-tagged events in $B^+ \rightarrow J/\psi K^+$.
 - Fit time evolution in $B^0 \rightarrow J/\psi K^*$.

- Use self-tagging control channels to calibrate tagging.
- Opposite—side tagging:
 - Fit time evolution in $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}.$
 - Count correctly/mis-tagged events in $B^+ \rightarrow J/\psi K^+$.
 - Fit time evolution in $B^0 \rightarrow J/\psi K^*$.
- Same-side tagging:
 - Fit time evolution in $B_s \to D_s^- \pi^+$

- Use self-tagging control channels to calibrate tagging.
- Opposite—side tagging:
 - Fit time evolution in $B^0 \rightarrow D^{*-} \mu^+ \nu_{\mu}.$
 - Count correctly/mis-tagged events in $B^+ \rightarrow J/\psi K^+$.
 - Fit time evolution in $B^0 \rightarrow J/\psi K^*$.
- Same-side tagging:
 - Fit time evolution in $B_s \to D_s^- \pi^+$
- Tagging optimised on MC and data; MC expectations:

algorithm	$\epsilon (1-2\omega)^2$
all OS	3.32 ± 0.15
SS kaon	2.39 ± 0.10
total	$\textbf{6.23} \pm \textbf{0.15}$

Expected Sensitivity

- Sensitivity for a time-dependent, three-angle, flavour-tagged analysis.
- MC expectations used for proper time and tagging.
- \sim 30k events in 1fb⁻¹.
- $\sigma\left(\phi_{s}^{J/\psi\phi}\right) \sim 0.07 \,\mathrm{rad.}$
- From realistic MC, systematic errors at < 10% level.
- All details in [arXiv:0912:4179v3].

Conclusions and Prospects

- Excellent performance of LHC and LHCb
 - LHC attained it's 2010 target for instantaneous luminosity.
 - Good amount of data on tape.
- So far, $\sim 900 \ B_s \rightarrow J/\psi \phi$ with $34 \mathrm{pb}^{-1}$.
 - Control channels also reconstructed: $B^0 \rightarrow J/\psi K^*$, $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$, $B_s \rightarrow D_s^-\pi^+$
 - Very good mass and proper time resolutions.
 - Background under control.
 - Encouraging tagging performance.
- Analysis well underway and expect 2010 results soon.
- Expect world's best measurement of $\phi_s^{J/\psi\phi}$ for 2011.

$$\sigma\left(\phi_{s}^{J/\psi\phi}
ight)\sim$$
 0.07 rad with 1 fb⁻¹