Selected topics in theoretical

neutrino physics

Cracow Epiphany Conference, 5-8 January 2010

Marek Zrałek,
University of Silesia

Outline

- Introduction
- Neutrinos in the Standard Model (SM)
- Experimental facts
- Neutrinos in the SM with small v mass
- Neutrinos beyond the SM
- Conclusions and perspectives

1) INTRODUCTION - What is behind us?

 Neurinos always give a new and unexpected informations about elementary interactions@ In 1930, Pauli, remedy for the energy crisis observed in the beta decay,
@ In 1934, Fermi, neutrinos were used to construct the first theory of week interaction - Fermi theory for beta decay,
@ Majorana in 1937, particles which are the same as their antiparticles can exist - Majorana particles,
@ Lee \& Yang (1956), Wu (1957) - P and C symmetries are broken in Nature,
@ Gargamelle (1973), neutral currents exist - first indication about Z boson,
@ (Years 60-70), neutrinos are parts of the leptons doublets Glashow, Weinberg and Salam - the unified model of electromagnetic and week interaction was created - the Model Standard,
@ In 1987 neutrinos from the supernova SN87A were observed

- the theory of supernova explosion was confirmed,
@ In LEP, 1989, in Z decay - first observation that only three generations of quarks and leptons exist in Nature,
@ Between 1998 and 2003 - solar neutrino problem was resolved - first independent proof that Bethe model of energy creation in stars hydrogen nucleosynthesis - is correct
@ Superkamiokande, in 1998, first real confirmation that atmospheric neutrinos oscillate - neutrinos are massive particles the Standard Model has to be extended

How to extend the Standard Model????

Neutrinos

in

the Standard Model

© Neutrinos are massless
(4) There are three neutrino flavours
(s) Left - handed interactions

In the SM

1) There is no RH neutrinos
2) There is only one Higgs doublet of $S U(2)_{L}$,
3) Theory is renormalizable,
4) Non-perturbative effects do not introduce m_{v}

As a consequence:

Neutrinos are massless

But vanishing of neutrino mass is not guaranteed by any fundamental symmetry
V_{e}, \quad F.Reines \& C. Cowan (1956) $-\mathrm{v}_{\mathrm{e}}$
There are three flavour neutrinos:
V_{μ}, M. Schwartz, L. Lederman, J. Steinberger (1962) - v_{μ}
V_{τ} - DONAT Collaboration in Fermilab (2000) $-\mathrm{v}_{\mathrm{u}}$.

From Z_{0} decay- LEP- there are only three flavour neutrinos

Neutrino interaction in the Standard Model

$$
L_{C C}=\frac{e}{2 \sqrt{2} \sin \theta_{W}} \sum_{\alpha=e, \mu, \tau} \bar{v}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) l_{\alpha} W_{\mu}^{+}+h . c .
$$

$$
L_{C C}=\frac{e}{4 \sin \theta_{W} \cos \theta_{W}} \sum_{\alpha=e, \mu, \tau} \bar{v}_{\alpha} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\alpha} Z_{\mu}
$$

As a consequence:

1. There is no lepton mixing,
2. There is no CP violation in the lepton sector,
3. In electromagnetic structure - only charge radius $\left\langle r^{2}\right\rangle$,
4. Neutrinos are stable.

What we know

from

experiments??

© Neutrino masses,
(2) Neutrino mixing,
© What must to be measured?

1) We know masses of charged leptons

$$
\begin{array}{|l|l}
m_{e}=0.510998910 \pm 0.000000013 \mathrm{MeV}, \\
m_{\mu}=105.6583668 \pm 0.0000038 \mathrm{MeV}, & \begin{array}{l}
\Delta m_{e}=0.013 \mathrm{eV}, \\
m_{\tau}=1776.84 \pm 0.17 \mathrm{MeV}
\end{array} \\
\Delta m_{\mu}=3.8 \mathrm{eV}, \\
\Delta m_{\tau}=170000.0 \mathrm{eV}
\end{array}
$$

2) Neutrino masses we know indirectly

| From tritium
 beta decay$\sqrt{\left\|U_{e i}\right\|^{2} m_{i}^{2}} \leq 2 \mathrm{eV}$ |
| :---: | | $m_{1}=0.0$ |
| :--- |
| $m_{2}=0.00871_{-0.00012}^{+0.0008} \mathrm{eV}$ |
| m_{3} |$=0.0501 \pm 0.0013 \mathrm{eV}$$\quad$| From $\Delta m_{21}^{2}=\left(7.59_{-0.21}^{+0.14}\right) \times 10^{-5} \mathrm{eV}^{2}$
 oscillation
 experiments$\Delta m_{32}^{2}=(2.43 \pm 0.13) \times 10^{-3} \mathrm{eV}^{2}$ |
| :--- |

From oscillation experiments:
$\sin ^{2}\left(2 \theta_{12}\right)=0.87 \pm 0.03$
$\sin ^{2}\left(2 \theta_{23}\right)>0.92$
$\sin ^{2}\left(2 \theta_{13}\right)<0.19$
$\delta, \phi_{1}, \phi_{2}=? ? ?$

Small neutrino masses and two large mixing angles contrast sharply with the quark masses and their mixing angles

Good motivation in the search for the origin of quarks and lepton flavour - a resurgence of interest in this subject

D. A. Eby, P. H. Frampton and S. Matsuzaki, arXiv:0907.3425 [hep-ph]; F. Bazzocchi and I. de Medeiros Varzielas, arXiv:0902.3250 [hepph]; A. Blum and C. Hagedorn, Nucl. Phys. B 821 (2009) 327 [arXiv:0902.4885 [hep-ph]]; G. Altarelli and D. Meloni, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620 [hep-ph]]; G. Altarelli, F. Feruglio and L. Merlo, JHEP 0905 (2009) 020 [arXiv:0903.1940 [hep-ph]]; L. Merlo, arXiv:0907.1781 [hep-ph]; S. Goswami, S. Khan and W. Rodejohann, arXiv:0905.2739 [hep-ph];M. Mitra and S. Choubey, Phys. Rev. D 78 (2008) 115014 [arXiv:0806.3254 [hep-ph]]; L. L. Everett and A. J. Stuart, arXiv:0812.1057 [hep-ph]; K. S. Babu and Y. Meng, arXiv:0907.4231 [hep-ph]; P. H. Frampton, S. T. Petcov and W. Rodejohann, Nucl. Phys. B 687 (2004) 31 [arXiv:hep-ph/ 0401206]; F. Plentinger and W. Rodejohann, Phys. Lett. B 625 (2005) 264 [arXiv:hep-ph/0507143]; R. N. Mohapatra and W. Rodejohann, Phys. Rev. D 72 (2005) 053001 [arXiv:hep-ph/0507312]; K. A. Hochmuth, S. T. Petcov and W. Rodejohann, arXiv:0706.2975 [hepph]; T. Ohlsson and G. Seidl, Nucl. Phys. B 643 (2002) 247 [arXiv:hep-ph/0206087]; E.Ma and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arXiv:hep-ph/0106291]; E.Ma, arXiv:0709.0507 [hep-ph]; E. Ma, arXiv:hep-ph/0701016; E. Ma, Mod. Phys. Lett. A 22 (2007) 101 [arXiv:hep-ph/0610342]; E. Ma, Mod. Phys. Lett. A 21 (2006) 2931 [arXiv:hep-ph/0607190]; E. Ma, Mod. Phys. Lett. A 21 (2006) 1917 [arXiv:hep-ph/0607056]; E. Ma, H. Sawanaka and M. Tanimoto, Phys. Lett. B 641 (2006) 301 [arXiv:hep-ph/0606103]; E. Ma, Phys. Rev. D 73 (2006) 057304; B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638 (2006) 345 [arXiv:hep-ph/0603059]; E. Ma, Mod. Phys. Lett. A 20 (2005) 2601 [arXiv:hep-ph/0508099]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arXiv:hep-ph/0505209]; S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724 (2005) 423 [arXiv:hep-ph/0504181]; E.Ma, Phys. Rev. D 70 (2004) 031901 [arXiv:hep-ph/0404199]; F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 775 (2007) 120 [arXiv:hep-ph/0702194]. C. Luhn, S. Nasri and P. Ramond, Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341 [hep-ph]]; F. Plentinger and G. Seidl, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889 [hep-ph]]; C. Csaki, C. Delaunay, C. Grojean and Y. Grossman, arXiv:0806.0356 [hep-ph]; M.-C. Chen and K. T. Mahanthappa, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714 [hep-ph]]; M.-C. Chen and K. T. Mahanthappa, arXiv:0710.2118 [hep-ph];M.-C. Chen and K. T.Mahanthappa, arXiv:0812.4981 [hep-ph]; R. N.Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639 (2006) 318 [arXiv:hep-ph/0605020]; R. N. Mohapatra and H. B. Yu, Phys. Lett. B 644 (2007) 346 [arXiv:hep-ph/ 0610023]; X. G. He, Nucl. Phys. Proc. Suppl. 168 (2007) 350 [arXiv:hep-ph/0612080]; A. Aranda, arXiv:0707.3661 [hep-ph]; A. H. Chan, H. Fritzsch and Z. z. Xing, arXiv:0704.3153 [hep-ph]; Z. z. Xing, Phys. Lett. B 618 (2005) 141 [arXiv:hep-ph/0503200]; Z. z. Xing, H. Zhang and S. Zhou, Phys. Lett. B 641 (2006) 189 [arXiv:hep-ph/0607091]; S. K. Kang, Z. z. Xing and S. Zhou, Phys. Rev. D 73 (2006) 013001 [arXiv:hep-ph/0511157]; S. Luo and Z. z. Xing, Phys. Lett. B 632 (2006) 341 [arXiv:hep-ph/0509065]; M. Hirsch, E. Ma, J. C. Romao, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D 75 (2007) 053006 [arXiv:hep-ph/0606082]; N. N. Singh, M. Rajkhowa and A. Borah, arXiv:hep-ph/0603189; X. G. He and A. Zee, Phys. Lett. B 645 (2007) 427 [arXiv:hep-ph/0607163]; N. Haba, A. Watanabe and K. Yoshioka, Phys. Rev. Lett. 97 (2006) 041601 [arXiv:hep-ph/0603116]; Z. z. Xing, Phys. Lett. B 533 (2002) 85 [arXiv:hep-ph/ 0204049]; Y. Lin, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867[hep-ph]]; L. Yin, arXiv:0903.0831 [hep-ph].

We do not know!!

A)The neutrino mass scheme:
\& Mass hierarchy
it Inverse mass hierarchy
\& Degenerate

B) Neutrino nature - Dirac or Majorana
C) Are the CP symmetry violated or no, phases
\& Dirac - δ,
\star Majorana $-\alpha_{1}, \alpha_{2}$
D) Is mixing angle θ_{13} different from zero

Neutrinos

in the
New Standard Model
(vSM)
ê Neutrino mass terms,
そ. Mössbauer neutrinos,
© GSI anomaly.

Since 1998 we know that neutrinos are massive -- what kind of mass term we have to add to the SM?

Dirac mass? $\quad m_{i}^{D}\left(\bar{V}_{i R} V_{i L}+\bar{V}_{i L} V_{i R}\right)$
or Majorana $\mathrm{L} \quad m_{L i}^{M}\left(\bar{V}_{i R}^{c} V_{i L}+\bar{V}_{i L} V_{i R}^{c}\right)$ mass??

$$
\mathrm{R} \quad m_{R i}^{M}\left(\bar{V}_{i L}^{c} \nu_{i R}+\bar{V}_{i R} \nu_{i L}^{c}\right)
$$

So in the frame of the new Standard Model (vSM)

$$
\begin{aligned}
L_{C C}=\frac{g}{2 \sqrt{2}} \overline{N_{a}} \gamma^{\mu}\left(1-\gamma_{5}\right) K_{a l} l_{l} W_{\mu}^{+}+h . c, & K_{a, l}=U_{l, \mathrm{a}}^{*} \\
L_{N C}=\frac{g}{4 \cos \theta_{W}} \overline{N_{a}} \gamma^{\mu}\left(1-\gamma_{5}\right) \Omega_{a b} N_{b} Z_{\mu} & \Omega_{a, b}=\delta_{a, b}
\end{aligned}
$$

In the present experiments: $\quad m_{i} \ll E$

Practical Dirac - Majorana Confusion Theorem

```
L.F. Li and F. Wilczek, Phys. Rev. D25 (1982) 143;
B. Kayser and R.E. Shrock, Phys. Lett. B112 (1982) 137;
B. Kayser, Phys. Rev. D26 (1982) }1662
```

Differences in all observables for the Dirac and Majorana neutrinos smoothly vanish for m_{v}

During last two years two important properties

 of "neutrino oscillation" were discused:- Mössbauer Neutrinos,
- Anomaly observed in the GSI

MÖSSBAUER NEUTRINOS

W.M.Visscher, 1959
W.P. Kells, J.P. Schiffer, 1983
R.S. Raghavan,2006

$$
A(Z-1) \rightarrow A(Z)+e^{-}+\bar{v}_{e}
$$

$$
\begin{array}{r}
M_{Z-1}=E_{v}+m_{v}+E_{R}+M_{Z}+E_{e}+m_{e} \\
\Delta=M_{Z-1}-M_{Z} \quad E_{B}=-E_{e}-m_{e} \\
E_{v_{e}}=\Delta+E_{B}-E_{R} \\
E_{B} \approx \text { const } \quad E_{R} \approx 0
\end{array}
$$

For Tritium embedded into a cristal
${ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{V}_{e} \quad \tau=17.81$ years
${ }^{3} \mathrm{He}+\mathrm{e}^{-}+\bar{v}_{e} \rightarrow{ }^{3} \mathrm{H}$

$$
\Gamma=\frac{\hbar}{\tau}=1.17 \times 10^{-24} \mathrm{eV}
$$

Even if we assume that various brodening effects degrade this value:

$$
\Gamma_{\mathrm{exp}} \approx 10^{-11} \mathrm{eV}
$$

Energy
difference for two relativistic neutrinos with

$$
\Delta E_{i k}=\frac{\Delta m_{i k}^{2}}{2 E}
$$

energy E
Then for:

$$
\Delta m^{2} \sim 2.5 \times 10^{-3} \mathrm{eV} \quad \begin{aligned}
& \text { Atmospheric } \\
& \text { neutrinos }
\end{aligned}
$$

$$
E=18.6 \mathrm{keV}
$$

We obtain: $\quad \Delta E \approx 7 \times 10^{-8} \mathrm{eV} \gg \Gamma$
\exp W. Potzel, 2006, R.S. Raghavan, 2006, but W. Potzel in Ustron 2009 probably observation of the effect in ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$ will be unsuccessful

Do Mössbauer neutrinos oscillate ???

$$
\begin{gathered}
m^{2}=E^{2}-p^{2} \\
\Delta m^{2}=\sqrt{(2 E \Delta E)^{2}+(2 p \Delta p)^{2}}
\end{gathered}
$$

E.K.Akhmedov, J. Kopp, M. Lindner, 2008

If: $\quad \Delta m^{2}=2 E \Delta E \approx 4 \times 10^{-7} \mathrm{eV}^{2} \quad$ No oscillation
But if: $\quad 2 p \Delta p \geq 2.5 \times 10^{-3} \mathrm{eV}^{2} \quad$ Neutrinos oscillate
Why is possible to have such big $\Delta p ? ?$ For particles on mass shell:

$$
p \Delta p=E \Delta E
$$

In bound states, energy and momentum are no \dagger connected by the "on mass shell" relation (e.g. eigenstate of harmonic oscillator has definite energy but not momentum)

$$
\widetilde{\lambda_{E C}}(t)=\lambda_{E C} \cdot[1+a \cdot \cos (\omega t+\phi)]
$$

There are attempts to explain these observations as neutrino oscillation

Giunti; Ivanov, Reda and Kienle; Lipkin; Peshkin; Burkardt, Lowe, Stephenson; Ivanov, Kryshen, Pitschmann, Kiele; Giunti; Lipkin....

Litvinov et al. (GSI), Phys. Lett. B664, 163 (2008)
A. N. Ivanov at. al., arXiv:0801.2121,
H. J. Lipkin, arXiv: 0801.1465, arXiv:
0805.0435 (The GSI method for studying neutrino mass difference - For Pedestrians),
H. Kleinert, P. Kienle, arXiv:0803.2938.

1) C.Giunti, arXiv:0801.4639,
2) H Kienert at al., arXiv:0808.2389,

No oscillation
3) M.Peshkin, arXiv:0804.4891, arXiv:08ね31.1765,

$$
\begin{gathered}
\text { Neutrino } \\
\text { oscillation with } \\
\text { the period: } \\
T_{d}=\frac{2 \pi}{\omega}=\frac{\gamma M_{d}}{\Delta m_{21}^{2}}
\end{gathered}
$$

Probability that measurement

 of any observable A gives one of the eigenvalue$$
a_{1}, a_{2}, \ldots, a_{N} \subset \Delta:
$$

$$
\begin{gathered}
p_{\Delta}=\operatorname{Tr}\left\{\hat{P}_{\Delta} \rho\right\} \\
\hat{P}_{\Delta}=\hat{P}_{a_{1}}+\hat{P}_{a_{2}}+\ldots \hat{P}_{a_{N}} \\
p_{\Delta}=p_{a_{1}}+p_{a_{2}}+\ldots+p_{a_{N}}
\end{gathered}
$$

In the two slits experiments:

$$
p\left(x_{1}, x_{2}\right)=\int^{x_{2}} d x p(x)
$$

$$
p(x)=\left|A_{1}(x)+A_{2}(x)\right|^{2}
$$

Neutrinos

beyond

the Standard Model

© MiniBOONE anomaly
© Problem of neutrino mass and mixing
©S Neutrino oscillation beyond the $S M$

MiniBooNE Anomaly

$$
\mathrm{P}\left(v_{\mu} \rightarrow v_{\mathrm{e}}\right)=\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta \mathrm{~m}^{2} \mathrm{~L} / \mathrm{E}\right)
$$

neutrino energy (E):

MiniBooNE: $\sim 500 \mathrm{MeV}$
LSND: $\quad \sim 30 \mathrm{MeV}$
baseline (L):
MiniBooNE: $\sim 500 \mathrm{~m}$
LSND: $\quad \sim 30 \mathrm{~m}$

K. Eitel, hep-ex/990903
$\nu_{\mu}=98.1 \%, v_{\mathrm{e}}=0.6 \%, \bar{v}_{\mu}=1.2 \%, \bar{v}_{e}=0.03 \%$

MiniBooNE Newtrino \& Antineutrino Discppearance Limits

A.A. Aguilar-Arevalo et al., PRL 103, 061802 (2009)

Improved results soon from

MiniBooNE/SciBooNE Joint Analysis!

In the same channel excess was observed by LSND

MiniBooNe coll.
arXiv:0812.2243
Excess (128.8 ± 43.4) at low energy (200-475 MeV) for

$$
V_{\mu} \rightarrow V_{e}
$$

transition, is observed.

No significant excess of events has been observed for

$$
\bar{v}_{\mu} \rightarrow \bar{v}_{e}
$$

oscillation at law (200-475 MeV) and at high energy (475-1250 MeV) regions.

There are a lot of papers which try to explain the electron neutrino excess:

[^0]S.N. Ganienko, arXiv:0902.3802

> \mathscr{A} Extra-dimensions, \& Sterile neutrinos, \& CPT violating interaction,
> \& Neutrino -antineutrino oscillation

Is there anomalous difference between neutrino and antineutrino properties ?? - result are inconclusive

Problem of Neutrino Mass and Mixing

- Why neutrino masses are so small, much smaller then charged leptons and quarks masses

- Why there two large mixing angles for leptons which contrasts sharply with the smallnest of the quark mixing angles.

Problem of particle mass is not solved, why we try to answer those questions about the neutrinos.

$$
\frac{m_{t}}{m_{e}} \approx 10^{5}
$$

There are several reasons:

$\frac{m_{t}}{m_{c}} \approx 10^{5}$ m_{c}

$\frac{m_{e}}{m_{e}} \leq 10^{6}$ m_{v}

We compare I-st and III-rd generation, in frame of the same family, masses of charged quarks and leptons conform within about an order of magnitude

Smallness of neutrino mass remains a question even within one family

Problem of neutrino mass is probably connected with their nature

Even if the problem of mass is not resolve, the large difference of lepton masses within a single family can shed light on the extension of the SM

Simply solution - add right-handed neutrinos

$$
L_{Y}=-\sum_{\alpha, \beta} f_{\alpha, \beta} \bar{\Psi}_{\alpha L}\left(-i \sigma_{2} \varphi^{*}\right) v_{\beta R}+\text { h.c. } \quad M_{\alpha, \beta}=\frac{v}{\sqrt{2}} f_{\alpha, \beta}
$$

But

Yukawa couplings are completely arbitrary
There is no good reason why $f_{\alpha, \beta}$ must be so small, but
There is no fundamental reason why we can not do that but we do not like this solution.

We can add the righthanded mass term

$$
L_{\text {bare }}=-\frac{1}{2} \sum_{\alpha, \beta} g_{\alpha, \beta} \bar{v}_{\alpha L}^{c} v_{\beta R}+h . c
$$

1. B-L is broken, Majorana neutrinos
2. See-saw mechanism, 3. Hierarchy problem

* Quantum gravity can give neutrino masses of order $10^{-5} \mathrm{eV}$ * Physics beyond the SM must explain observed neutrino masses
Different models of neutrino mass
A. Models with the SM gauge group
A.1. Models with extended fermion sector
$>$ Dirac neutrinos
> Majorana neutrinos
A. 2 Models with enlarged Higgs sector
$>$ Higgs triplet (Δ)
$>$ Singly charged singlet (h , Zee model)
$>$ Doubly charged singlet (k_{++})
A. 3 Models with spontaneous B-L symmetry breaking (Majoron)
$>$ Gauge singlet + right-handed neutrinos
$>$ Extended Higgs sector $(\Delta, h$.

B. Models with beyond the SM gauge group

B. 1 Models with Left-Right symmetry
$>$ Two doublets Higgs
> Two doublets and triplets
B. 2 Models of Grand Unification

$$
\begin{aligned}
& >S U(5) \\
& >S O(10) \\
& >E_{6}
\end{aligned}
$$

B. 3 Supersymmetric models
> Supersymmetric SM -MSSM
$>$ Supersymmetric Left-Right model
B. 4 Models with Family Symmetry

Why neutrino masses are very small, answer depends on neutrino nature
(I) Dirac neutrinos, $\quad m_{i}^{D}\left(\bar{v}_{i R} v_{i L}+\bar{v}_{i L} v_{i R}\right)$
or
(II) Majorana neutrinos $\left\{\begin{array}{l}m_{L i}^{M}\left(\bar{v}_{i R}^{c} v_{i L}+\bar{v}_{i L} v_{i R}^{c}\right) \\ m_{R i}^{M}\left(\bar{v}_{i L}^{c} v_{i R}+\bar{v}_{i R} v_{i L}^{c}\right)\end{array}\right.$
(I) Dirac Neutrinos

Righ handed neutrino fields have to be added
 $V_{\mathrm{L}} \quad \mathrm{O}_{\mathrm{H}}$

$$
\begin{aligned}
& m_{v} \sim \lambda_{v}\langle H\rangle \bar{\nu}_{i R} V_{i L} \\
& \langle H\rangle \approx 175 \mathrm{GeV}
\end{aligned}
$$

$$
m_{v} \approx 0.2 \mathrm{eV} \Rightarrow \lambda_{v} \approx 10^{-12} \begin{gathered}
\text { Resoluti } \\
\text { EXTAA }
\end{gathered}
$$

(II) Neutrina Majorany

See-saw mechanism

Higgs triplet \triangle :
($\Delta L L$)
$\rho \approx 1 \Rightarrow\langle\Delta\rangle<8 \mathrm{GeV}$
(See-saw II type)
Directly testable at LHC
Two Higgs doublet $\mathrm{H}: \quad \frac{1}{M}(H H L L) \quad m_{v} \sim \frac{1}{M} \lambda_{v}\langle H\rangle^{2}$
R fermion singlet: $\quad \frac{1}{M} H L R \quad M \approx 10^{13}-10^{16} \mathrm{GeV}$
R_{3} fermion triplet:

$$
\frac{1}{M} H L R_{3}
$$

Hierarchy problem scale $\approx 1 \mathrm{TeV}$ GUT scale $\approx 10^{16} \mathrm{GeV}$ Planck skale $\approx 10^{19} \mathrm{GeV}$

There is balance between
"naturalness" and
"testability"

Problem of neutrino mass is connected with their mixing

$$
U_{(3 \sigma)}=\left(\begin{array}{ccc}
0.77-0.86 & 0.50-0.63 & 0 .-0.22 \\
0.22-0.56 & 0.44-0.73 & 0.57-0.8 \\
0.21-0.55 & 0.40-0.71 & 0.59-0.82
\end{array}\right)
$$

Tri-bimaximal (TB) mixing pattern

$$
\begin{aligned}
& \sin \theta_{12}=\frac{1}{\sqrt{3}}(1+s) \\
& \sin \theta_{23}=\frac{1}{\sqrt{n}}(1+a)
\end{aligned} \quad \sin \theta_{13}=\frac{r}{\sqrt{2}}
$$

$$
U_{T B}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

If $r,|s|,|a| \ll 1$ then TB is satisfied and would demand explanation.

If r, s, a are closed to their current 2σ bounds, then TB mixing would only be realized approximately

If TB is realized signal of underlying family symmetry

Then from spectral theorem neutrion mass matrix can be decomposed:

$$
\mathrm{M}_{v}=\frac{m_{1}}{6} \Phi_{1} \Phi_{1}^{+}+\frac{m_{2}}{3} \Phi_{2} \Phi_{2}^{+}+\frac{m_{3}}{2} \Phi_{3} \Phi_{3}^{+}
$$

Where m_{i} are the neutrino masses, and Φ_{i} - appropriate eigenvectors, so

$$
\begin{gathered}
U_{M N S}=\left(\frac{1}{\sqrt{6}} \Phi_{1}, \frac{1}{\sqrt{3}} \Phi_{2}, \frac{1}{\sqrt{2}} \Phi_{3}\right) \\
\Phi_{1}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad \Phi_{2}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \quad \Phi_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{gathered}
$$

Large numbers of different flavour symmetry groups
continuous: $\mathrm{SO}(3), \mathrm{SU}(3), \ldots$ and discrete: $\mathrm{Z}, \mathrm{S}, \mathrm{A}, \ldots$

Neutrino oscillation beyond the SM

(A.1) Produced and detected neutrinos are described by the pure QM states:

$$
\left|v_{\alpha} \downarrow\right\rangle=\sum_{i} U_{\alpha i}^{*}\left|v_{i} \downarrow\right\rangle \quad\left|\bar{v}_{\alpha} \uparrow\right\rangle=\sum_{i} U_{\alpha i}\left|\bar{v}_{i} \uparrow\right\rangle
$$

(A.2) Number of neutrinos in a detector is described by the factorized formula:

$$
\begin{gathered}
\text { Density of the } \\
\alpha \text { initial } \\
\text { neutrinos }
\end{gathered}
$$

$$
\sum_{\beta=e, \mu, \tau} P_{\alpha \rightarrow \beta}(E, L)=1
$$

Number of $\boldsymbol{\beta}$ neutrinos with energy E, which reach detector
in a unit time

Probability of α to $\boldsymbol{\beta}$
neutrino
conversion

Number
of active scattering centres in a detector
(A.3) Dirac and Majorana neutrinos oscillate in the same way, so it is impossible to distinguish both types of neutrinos in any oscillation experiments.
\triangleleft Neutrino masses are too small, they are relativistic particles, and there is no chance to distinguish Dirac from Majorana neutrinos in a production and detection process
\diamond The CP Majorana phases disappear from the oscillation probabilities

New physics can modify neutrino oscillation

* at the source (production process),
* propagation in matter
* at the detector

Beyond the Standard Model

As an example for the production process we take:

μ^{-} decay

For Dirac neutrinos

$$
\mu^{\mu^{-}\left(\lambda_{\mu}\right) \rightarrow} e^{-\left(\lambda_{e}\right)+\bar{\nu}_{n}\left(\lambda_{n}\right)+\nu_{m}\left(\lambda_{m}\right)} \text { Beyond the SM }
$$

For Majorana neutrinos

$$
\mu^{-}\left(\lambda_{\mu}\right) \rightarrow e^{-}\left(\lambda_{e}\right)+\nu_{n}\left(\lambda_{n}\right)+\nu_{m}\left(\lambda_{m}\right)
$$

For Dirac nautrinos

In the

$$
\begin{aligned}
& \bar{V}_{e}=v(\lambda=+1)\left|\bar{v}_{e}\right\rangle=\sum_{i=1}^{3} \mathrm{U}_{e i}\left|\bar{v}_{i}\right\rangle \\
& v_{\mu}=v(\lambda=-1)\left|v_{\mu}\right\rangle=\sum_{i=1}^{3} \mathrm{U}_{\mu i}^{*}\left|v_{i}\right\rangle
\end{aligned}
$$

$\left.\begin{array}{cc}\text { Beyond the } & \bar{v}_{e} \leftrightarrows v(\lambda=+1) \\ \text { SM: } & v_{\mu} \longleftrightarrow v(\lambda=-1)\end{array}\right]$
For Majorana neutrinos

In the SM
or
beyond the SM:

(B.1) Neutrino density matrix is calculated in the standard way

State of the neutrinos produced in the process

$$
A \rightarrow B+\bar{l}_{\alpha}+v_{i}
$$

M.Ochman,R. Szafron,MZ,
J.Phys.G35:065003,2008
is described by the density matrix (if initial particle (\mathbf{A}) is not polarized and polarizations of the final particles (B, l) are not measured):

$$
\begin{gathered}
\rho_{\lambda, i ; \mu, k}^{\alpha}=\frac{1}{N_{\alpha}} \sum \int f_{i}^{\alpha}\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}, \lambda\right) f_{k}^{\alpha^{*}}\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}, \mu\right) \\
\operatorname{Tr}\left(\rho^{\alpha}\right)=1
\end{gathered}
$$

where $f_{i}^{\alpha}\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}, \lambda\right)$ are the amplitudes for
the production process $A \rightarrow B+\bar{l}_{\alpha}+v_{i}$.

But even if only left - handed neutrinos are produced
The necessary and sufficient condition for pure initial state of produced neutrinos with negative helicities is the factorization for spin and mass of the production amplitudes
$f_{i}^{\alpha}\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}, \lambda=-1\right)=g^{\alpha}\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}, \lambda=-1\right) * h_{i}^{\alpha} \equiv g_{\mu}^{\alpha} h_{i}^{\alpha}$
If we introduce the shortcut notation:
Then: $\quad \mu=\left(\lambda_{A} ; \lambda_{B}, \lambda_{l}\right)$

$$
f_{i}^{\alpha}(\mu)=g^{\alpha}(\mu, \lambda=-1) * h_{i}^{\alpha} \equiv g_{\mu}^{\alpha} h_{i}^{\alpha}
$$

Then the density matrix is given by:

$$
\rho^{\alpha}(i, \lambda=-1 ; k, \mu=-1)=\chi_{i}^{\alpha} \chi_{k}^{\alpha^{*}}
$$

where

$$
\chi_{i}^{\alpha}=\frac{h_{i}^{\alpha}}{\sqrt{\sum_{i}\left|h_{i}^{\alpha}\right|^{2}}}
$$

which is equivalent to the pure QM state:

$$
\begin{gathered}
\left|v_{\alpha}\right\rangle=\sum_{i} \chi_{i}^{\alpha}\left|v_{i}\right\rangle \quad\left|v_{\alpha}\right\rangle=\sum_{i} U_{\alpha i}^{*}\left|v_{i}\right\rangle \\
\left\langle v_{\alpha} \mid v_{\beta}\right\rangle=\sum_{i} \chi_{i}^{\alpha} \chi_{i}^{\beta^{*}} \neq \delta_{\alpha \beta}(=1 \text { for } \alpha=\beta) \prod_{\substack{\alpha \\
U_{\alpha i}^{\alpha}}}^{v S M}
\end{gathered}
$$

(B.2) Factorization for the final oscillation rate

$\sigma_{\alpha \rightarrow \beta}(L, E)=$
$\frac{1}{32 \pi s} \frac{p_{f}}{p_{i}} \frac{1}{2 s_{f}+1} \sum_{i, k, \lambda_{c}, \lambda_{,}, \lambda_{D}} \int d \Omega A_{i}^{\beta}\left(\lambda, \lambda_{C}, \lambda_{l}, \lambda_{D} ; \Omega\right) \rho^{\alpha}(i, \lambda ; k, \lambda ; L, E) A_{k}^{\beta^{\beta}}\left(\lambda, \lambda_{C}, \lambda_{l}, \lambda_{D} ; \Omega\right)$
The density matrix after oscillation

$$
\rho^{\alpha}(i, \lambda=-1 ; k, \mu=-1 ; L, E)=\rho_{i, k}^{\alpha}(L, E) e^{-\frac{\delta m_{i, k}^{2}}{2 E}}
$$

If the detection amplitudes factorize

$$
A_{i}^{\beta}\left(\lambda=-1, \lambda_{C}, \lambda_{l}, \lambda_{D} ; \Omega\right)=e_{\eta}^{\beta}(\theta, \varphi) * k_{i}^{\beta}
$$

Then the final cross

$$
\sigma_{\alpha \rightarrow \beta}(L, E)=
$$ section factorize

$$
\begin{gathered}
\frac{1}{32 \pi s} \frac{p_{f}}{p_{i}} \frac{1}{2 s_{f}+1} \sum_{i, k, \eta} \int d \Omega\left(e_{\eta}^{\beta} * k_{i}^{\beta}\right)\left(\rho_{i, k}^{\alpha} e^{-\frac{\delta m_{i, k}^{2}}{2 E} L}\right)\left(e_{\eta}^{\beta^{*}} * k_{k}^{\beta^{*}}\right)= \\
=P_{\alpha \rightarrow \beta}(L, E) \sigma_{\beta}(E)
\end{gathered}
$$

The oscillation probability is given by:

$$
P_{\alpha \rightarrow \beta}(L, E)=\sum_{i, k} \rho_{i, k}^{\alpha}(L, E) k_{i}^{\beta} k_{k}^{\beta^{*}} e^{-\frac{\delta m_{i, k}^{2}}{2 E} L}
$$

And the final detection cross section

$$
\sigma_{\beta}(E)=\frac{1}{32 \pi s} \frac{p_{f}}{p_{i}} \frac{1}{2 s_{f}+1} \sum_{\eta} \int d \Omega\left|e_{\eta}^{\beta}(\theta, \varphi)\right|^{2}
$$

The sum over all final flavours

$$
\sum_{\beta=e, \mu, \tau} P_{\alpha \rightarrow \beta}(L, E)=\sum_{i, k} \sum_{\beta=e, \mu, \tau}\left(k_{i}^{\beta} k_{k}^{\beta^{*}}\right) \rho_{i, k}^{\alpha} e^{-\frac{\delta m_{i, k}^{2}}{2 E}}{ }_{\text {if }}=\sum_{i} \rho_{i, i}^{\alpha}=1
$$

The probability is conserved if the final states are orthogonal

$$
\sum_{\beta=e, \mu, \tau}\left(k_{i}^{\beta} k_{k}^{\beta^{*}}\right)=\delta_{i, k}
$$

(B3) Dirac and Majorana neutrinos propagate in matter in a different way, so in principle both types of neutrinos can be distinguished in future oscillation experiments.
\square Production and detection states are the same if one neutrino is produced or detected
\square If two neutrinos are produced (like in the muon decay) or detected (like in the inverse muon decay), even in the production and detection processes Dirac and Majorana neutrinos are distinguished
\square Propagation in a matter distinguishes both types of neutrinos (neutral currents are crucial).

Conclusions and

Perspectives

The road ahead:

EXPERIMENTS:

- Are neutrino Dirac or Majorana particles?
- What are absolute neutrino massea
- Is the 23 angle maximal?
- Does the 13 angle vanish?
- Is there CP volation in the lepton sector?
- Do the sterile neutrino exist?

THEORY

MASS PROBLEM

- To understand why neutrino mass is so tiny

FLAVOUR PROBLEM

- Why the leptons and quarks mixing angles are so different?
- To understand CP symmetry breaking in the lepton sector PROBLEM OF INTERACTION
- Are there non-standard neurtino interaction in the TeV scale?

[^0]: Michel Sorel, Janet Conrad, and Michael Shaevitz, Phys. Rev. D 70, 073004 (2004); G. Karagiorgi et al., Phys. Rev. D 75, 013011 (2007); Alessandro Melchiorri et al., [arXiv:0810.5133]; Michele Maltoni and Thomas Schwetz, Phys. Rev. D 76, 093005 (2007);
 G. Karagiorgi, Z. Djurcic, J. M. Conrad, M. H. Shaevitz and M. Sorel, sumbitted to Phys. Rev. D, arXiv:0906.1997.
 Jeffrey A. Harvey, Christopher T. Hill, and Richard J. Hill, Phys. Rev. Lett. 99, 261601 (2007); Phys. Rev. D 77, 085017 (2008).

 Heinrich Paes, Sandip Pakvasa, and Thomas J. Weiler, Phys. Rev. D 72, 095017 (2005). T. Goldman, G. J. Stephenson Jr., and B. H. J. McKellar, Phys. Rev. D 75, 091301 (2007). Ann E. Nelson and Jonathan Walsh, Phys. Rev. D 77, 033001 (2008).
 S. Hollenberg, O. Micu, H. Pas, arXiv:0906.5072 [hep-ph].

