Recent developments in
modeling neutrino interactions
in 1 GeV energy region
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Motivation

1 GeV is the typical energy region of all long

baseline neutrino oscillation experiments.

Adapted from P. Lipari, Nulnt(1
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(from Hiroshi Tanaka)
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Why do we need cross sections?
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1] 1] 1.8 2 258 a
E, [GeV)

* We do not know neutrino energy, we only see final states.

* Oscillations are energy dependent !

* |n order to investigate oscillations we must reconstruct
neutrino energy or to investigate observed distribution
of muons - in both cases we should understand cross
sections.

In particular nuclear effects are important for targets like:
carbon, oxygen, argon, iron.
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Motivation

On the theoretical side, several dynamical
mechanisms must be considered together.

Adapted from P. Lipari, Nulnt(1
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Quasi-elastic axial mass puzzle

How do we define ,,quasi-elastic” reaction?

The name refers to the free target CC processes:

vV +n —> [ + p
D +p - 1" +n

But typically, the reaction occurs on nucleus target:

A — A—1
v + X - [ + p + 7 ,X
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Quasi-elastic axial mass puzzle

We assume ,,factorization”, every interaction is a two-step process:
* a ,primary interaction” on a quasi-free nucleon

* ,final state interactions” affecting only hadrons, here viewed as a unitary
transformation in the space of final hadronic states

nucleon

muo We define ,,quasi-elastic’’ events
as coming from the quasi-elastic
primary interaction.

But keep in mind that
experimentalists observe
only final states!

neutrino
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Quasi-elastic axial mass puzzle

V+n—->1[L +p

D+ p 1"+

JF,(07) F,(0%)
v YnVsFalQY)+vsg,—

F1 and F2 are determined by isospin symmetry, electromagnetic data is used

T =y, F, (0?) +i0 g

For the axial part the PCAC hypothesis is used to fix Fp
2M°F,(0%)

2 2
m_+Q

F,(Q%)

We still need Fa: the dipole form is assumed

g
2\ _ A
F,(Q0°)= 5 |2 g, = 1.26 from beta decay,
1+% M, a free parameter (the only one)
M,
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Quasi-elastic axial mass puzzle
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Quasi-elastic axial mass puzzle
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V. Bernard, L. Elouadrhiri, and U.G. Meissner, J. Phys. G 28, R1 (2002)
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Charged pion electroproduction:
MA=1.069% 0.016 GeV

but ... corrections to be calculated
within chiral perturbation theory!
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Quasi-elastic axial mass puzzle

V. Bernard, L. Elouadrhiri, and U.G. Meissner, J. Phys. G 28, R1 (2002)
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The agreement seems

to be very good... A<ri>E<i’i>—<l’i>=—0-O456ﬁn2

AM ,=0.055GeV
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Quasi-elastic axial mass puzzle

Most recent neutrino data:

TABLE 1. Modern determinations of M, determined from shape fits to neutrino QE data
assuming the FG model. Note: the K2K and MiniBooNE data were collected at lower
neutrino energies than the MINOS and NOMAD samples.

experiment M, (GeV) target fit range
K 2K 1.204£0.12 [4] B0 (07 0.2 GeV-
K 2K 1.14 +£0.11 [5] 120 07 =0.2 GeV-
MiniBooNE (2009)  1.2740.14 [6] 120 (7 = 0.25 GeV?
MiniBooNE (20097  1.3540.17, x=1.007+£0.007 [6] '"*C (0% =0GeV*
MINOS 1.26 +0.17 [7] WFe (07 =03 GeV-
MINOS 1.19 £0.17, pr scale= 1.28 [7] ®Fe  (° =0GeV”
NOMAD 1.07 £0.07 [8. 9] 120 07 =0 GeV?

SciBooNE — ,,consistent with MA=1.21" (within Neut MC)

If axial mass in increased from 1.03 to 1.23, the number of QE
events is increased by ~20% !
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Quasi-elastic axial mass puzzle

Possible explanations:

* statistical fluctuations (after all the discrepancy is on the 20 level)

* MiniBooNE overestimates the beam (the claim 1s that it 1s know
with uncertainty of 8.4%; but all the cross sections reported by MB

are very large — see later)

* something is wrong in the data analysis...
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Quasi-elastic axial mass puzzle

\'H+11%'p+!.{ -~

(\'M+1‘C — X+Uu)

MiniBooNE detector
(spherical Cherenkov detector)

muon like Cherenkov
light and subsequent
decayed electron
(Michel electron) like
Cherenkov light are
the signal of CCQE

guant

(Scintillation)

(from Teppei Katori)

fficiency

27% ef
77 % purity
146 070 events
with 5 58E20P0OT
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MiniBooNE collaboration tried to
made the analysis independent on

the models implemented

in the Monte Carlo generator (Nuance).

v, CCQE interactions (v+n — w+p) has characteristic two
‘subevent” structure from muon decay
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Quasi-elastic axial mass puzzle

The background is dominated

- - : )
with CC1x without pion L 2 subevent (CCQE samolel
(CCQE-like). We need a i i — - Zocor”
background prediction with an 2000 __[" : ++__4__h++ D‘“ihg_
absolute scale. 1°"§u=gf. e '

Solution £ om0 3 subevent (CC1x* sample)
£ 00p " ' ﬂ?('_?tﬂtﬂl
Use data-MC Q2 ratio in B 1;:2 OeCOE

(from Teppei Katori) CCilm sample_ to correct all f,,.; others
CC1m events in MC. Wi Gev*
(GeV")
P n - = 22
Then, this "new” MC is used s 2
to predicts CC1x background & 16
in CCQE sample £ M5
9 0sE
0.6 \ \ , . ) ) ) . - .
This correction gives both ool N 08T 12 e g jeey)
7000

CC1x background
normalization and shape in
CCQE sample

Events

Background subtraction is MC independent !
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Quasi-elastic axial mass puzzle

Possible explanations:

* statistical fluctuations (after all the discrepancy is on the 20 level)

* MiniBooNE overestimates the beam (the claim 1s that it 1s know
with uncertainty of 8.4%; but all the cross sections reported by MB
are very large)

* something 1s wrong in the data analysis...

* large 2p-2h contribution !
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Quasi-elastic axial mass puzzle

Martini-Marteau model

(many body RPA computations)
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Quasi-elastic axial mass puzzle

MiniBooNE will provide double differential cross section data
which will be very useful in more detail discussion.

Flux-averaged double differential cross section (T ,-cos6)

This is the most
complete information
about neutrino cross
section based on muon

d’s 2 3
dT doosg (M /GeV) e MiniiBooNE data (5N=10.7%) d—;_ﬁgw—{fﬂ" ARGV e

[ MiniBooNE data with shape error E 0.8

kinematic “0.6
measurement. 0.4
0.2
The error shown here -uj .
is shape error, a total 04 cross section

normalization error
(8N;=10.7%) is
separated.

0.6 value
0.8

- AEETEEE FETE P N TS NS
18 2 0.2 04 0608 1 12141618 2
o

It 1s important to compare with Martini's double differential cross section !
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Quasi-elastic low Q2 problem

Pauli blocking parameter "kappa", &

To enhance the Pauli blocking at low Q2, we introduced a new parameter k, which
is the energy scale factor of lower bound of nucleon sea in RFG model in Smith-
Maoniz formalism, and controls the size of nucleon phase space

Elo =\‘-"m —Wt EB )

final nucleon
phase space

Initial nucleon
phase space

Pauli blacked .

phase space

(from Teppei Katori)
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FPauli blocking
is enhanced

AiniBooNE and Minos introduced ad hoc parameters to correct for low Q2 behavior.
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Quasi-elastic low Q2 problem

At low Q2 collective effects become important.
For momentum transfer g, the spacial resolution 1s ~ 1/q.

At g = 300-400 MeV individual nucleons ,,are seen”.

v+ %0 - p+X

— 14 I I I I I
= Lol E, (GeV)
= 04— 5 25 — . . .
N\]. 0 | N = GiBUU, My = 0.99 GeV ]
g 0.6— Y  +RPA - ]
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%06 - 1.0— E "o ,r v, CCQE on '%C _
~ 5} 1 - y
o 04 - _5 f MiniBooNE flux 1
; 0.2+ - & 05 \\%ﬂh
S 0 | | | | | N% o . =
0 200 0 600 800 1000 1200 1400 I O 02 04 06 08 1 12
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,,safe " reg lon » rPA brings the shape closer to experiment keeping M, = 1 GeV

(from Luis Alvarez-Ruso)
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Coherent pion production

Reaction 1s (nucleus X ,
remains in the ground state): V+X - D+ +X

D+X o1 +11 +X

This 1s a small fraction of the overall single

pion production cross section, but there has been recently
a lot of experimental and theoretical activity.

(dominant mechanism for pion production is via
resonance excitation)

J.T. Sobczyk, Epiphany Conference, Cracow, January 6, 2010
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Coherent pion production

Well established at higher neutrino energies:

To allow comparison between experiments on different
nuclear targets, assume A7 scaling (corrected to 4 — 16)

CC Coherent Pien Production Cross Section
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NC and CC data are put together !

J.T. Sobczyk, Epiphany Conference, Cracow, January 6, 2010

CC Coherent Fion

w50 . )
S 200 7 ena (coY, wiloeq,
b « FNAL (CC), Alderhao
g » Aachen (NC), Faiss
o o GOGM (NC), Isiksal, A
T~ SKAT (CCY, Grabos
ul [m y L E I
&40 skt (NG, Grabos,
= o BEBC (CC), Marage
e o CHARM (CC), Bergs
¥ . CHARM 11 (CC), Viloi
O .
— 300
A
(]

100

Froduction Cross Section

‘hys. Rev. D47, 2661 (1993)
z, Phys, Rev. Lett. 63, 2349 {1989
her, Phys, Lett, 1258, 230 (1283)
hys. Rev. Lett. 52, 1096 {1984)
i, Z. Phys. C31, 203 (1988)

h, Z. Phys, C31, 223 {1988)

7. Phys. C43, 52 (1989)
ma, Phys, Lett, 1578, 469 (1885}
1, Phys, Lett, 3130, 267 (1993)

&

A = et +A)

L

o
T

NUANCE

onc(coh) =

o’(coh) = o

B0 80 100 120 140

E, (GeV)

1/2 oce(coh)

T/

(coh)

22



Coherent pion production

Experimentally the situation with low(~ 1 GeV) energy coherent pion

production 1s little puzzling:

* for NC reaction K2K and MiniBooNE reported a nonzero coherent

contribution to the cross section

* for CC reaction K2K and SciBooNE reported no coherent signal

After imposing suitable cuts:
* QE rejection

* RES rejection (forward
going pions are kept)

Entries / 0,025 (GeV/c)*
M iy

o
-]

3

CC coherent pion sample

MRD stopped sample

<ev>= 1.1 GeV

0.4 0.5
Q*(GeVicy

247events selected

Entries / 0,025 (GeVic)®

MRD penetrated sample

Y
=]

8

8

<Ev>= 2.2 GeV

0.4 0.5
Q2 (GeVic)

57events selected

(from K. Hiraide)
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Coherent pion production

SciBooNE's conclusions:

MRD stopped sample o(CC coherent 7 )/ ¢(CC)
<Ev>= 1.1 GeV = (0.16 + 0.17( stat )})3) (sys ))x 107>

MRD penetrated sample o(CC coherent 77)/ o(CC)
<Ev>= 2.2 GeV = (0.68  0.32( stat ' (sys ))x 10~

No evidence of CC coherent pion production is found

.
imi i

o(CC coherent ©t)/c(CC) < 0.67x102 for <Ev>=1.1 GeV

< 1.36x102 <Ev>=2.2 GeV

K. Hiraide et al, PRD78.112004 (2008)
(from K. Hiraide)

but...
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Coherent pion production

Data excess with respect to no CC coherent pion MC

:l 1
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- EE ..-' ff_.
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o R s .
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N :
| I T T
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H.ldag

(from K. Hiraide)

P | .
1s0 at small pion angle

If this is due to CC coherent pion events,
data suggest that pion tends to go in smaller angle
than the Rein-Sehgal prediction

How precise is COH signal's template given by MC ?
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Coherent pion production

Experimental analysis is based on comparison with predictions from
Monte Carlo generators of events.

Current MC describe coherent pion production using the Rein-Sehgal
model.

The plots below come from the comparison project done for the last year Nulnt09.
Comparison of Models of Neutrino-Nucleus Interactions

S.Boyd'. 8. Dyvtman’, E. Herndndez' ", I. Sobczyk® and R. Tacik®
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Coherent pion production
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Predictions

for distributions
of pions kinetic
energy.

Monte Carlo's
produce a lot
of structure
not seen in
modern
theoretical
computations!
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Coherent pion production
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Double differential
Cross sections at
fixed pion production
angle.

Neutrino energy
is 1 GeV.
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Coherent pion production

There are three main theoretical approaches:
* PCAC relates neutrino coherent process to elastic pion-nucleus scattering
* microscopic computations with A resonance

* Martini-Marteau model, RPA many body computations
to cover both quasi-elastic and A excitation.

29
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Coherent pion production

Rein&Sehgal founded their model on the Adler's PCAC based theorem relating
V+a—[+p and I+o—

For q,q"—0 |M(1)+(x—>l+[3)|2=16G20052(9C)f2 v ! |M(1‘[+0(—>B)|2

II

It is enough to choose: a=X A P=m+X

and coherent pion production becomes related to elastic pion-nucleus scattering!

Further improvements and clarifications:

* a form-factor to extrapolate to nonzero Q2
* lepton mass corrections (Berger & Sehgal)
* kinematics

* precise pion-nucleus elastic scattering data

30
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Coherent pion production

Microscopic computations:

* one starts from a theoretical description of the nuclear structure and sums the
pion production amplitude coherently over all target nucleus state

* ,local approximation” is adopted: the pion production amplitude is factorized
into a part containing the pion production amplitude and one containing

the nuclear size information

* predictions are very sensitive to the value of C5A(0) (axial nucleon-A transition

form-factor); PCAC arguments suggest C5SA(0)=1.2, but there is a lot of recent
discussion on that issue with suggestions that the value can be as small as ~0.85.
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NC1PiO

Motivation: dangerous background in the electron neutrino
appearance measurement in SK. Needs good theoretical control.

There are 4 different (but not completely independent) measurements:
Beams: K2K, MiniBooNE neutrinos, MiniBooNE antineutrinos
Targets: H,0, CH,, C H j|different ratios of carbon to hydrogen |
Events: NC1Pi10 with FSI, NCP10 with some (?) cuts (SciBooNE)

Cross section: normalized (MiniBooNE),
ratio NC1P10/CC (K2K, SciBooNE).
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NC1PiO

K2K: Nakayama et al, PLB619 (2005) 255
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x1o” 1000 | l
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1Pi0 &&
no other

piOl’lS O — 3~z 3 rE EUCI- |—1- %
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F1G. 1: The energy spectrum of the K2K nentring beam at

300 m downstream from the target in the near site with a D [ ) ) L ) L | L ) | ) 1.
10" protons on target exposure predicted by a neutrino beam 20“ UU EDD UD
simulation. The spectrum s averaged within 2m from the ﬂ 4 B
beam center. o

n- momentum (MeV/c)

By taking the ratio, the relative cross section for Tal’getl H20
NC17” interactions to the total 1, CC cross section
15 measured to be 0,064 £ 0.001 (stat.) £ 0,007 (sys.).
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NC1PiO

MiniBooNE (and SciBooNE) beams:

o,
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FIG. 27: Total predicted Hux at the MimiBooNE detector by neutrino species with horn in neutrino
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FIG. 28: Total predicted flux at the MiniBooNE detector by neutrino species with horn n anti-

neutrino mode.
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NC1PiO

MiniBooNE:
. scattering. We define signal NC 17" events to be NC in-
arXiv:0911.2063 [hﬁp-eX] teractions wherein only one 7 and no additional meson
exits the target nucleus (no requirement on the number
or identity of outgoing nucleons is made). This definition
is consistent with that used at K2K[22]. It is specifically

)
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%
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FIG. 7: Flux-averaged absolute differential cross sections for NC 17° production on CHjy including the effects of FSI. Data are
shown as black dots with statistical error bars and systematic error boxes. The dark-gray line is the Monte Carlo prediction[26]
using R-5 meodels of single pion production[2, 5] modified as described in the text. (a) d}‘f—”o for vu-induced production. (b)

i
da : : dor — . de _ . . .
Teos8g for v,-induced production. (c) W5 for ,-induced production. (d) Toos 8 for #,-induced production. The numerical

values for the cross sections appear in Appendix C and are also available at the MiniBooNE website[36].
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SciBooNE:

arXiv:0910.5768[hep-ex]

| o LA o N
N C We define an NC#¥ interaction as an NC neutrino in-

teraction in which at least one

is emitted in the final

state from the target nucleus, v, C — y#?r“)f where X

represents the nuclear remnant and any combination of

nucleons and mesons. According to our MC simulation,

neutrino beam on a polystyrene target (CsHg). We obtain (7.7 £ 0.5(stat.) £ 0.5(sys.)) x 1077 as
the ratio of the neutral current neutral pion production to total charzed current cross section; the

— sialisiic emor
- —
lsyslematic error
* L e MC expeciation

Fraction of Evegts /80 MeV/c
[\¥]
[

. .

1 1 1 1 | 1 1 :
DO 500

Corrected n° momentum (MeV/c)

FIG. 21: The 7 momentum distribution after all corrections
described in the text, with statistical (error bars) and sys-
tematic (red boxes) uncertainties. The dashed line shows the
Monte Carlo expectation based on the Rein and Sehgal model.
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target:

CyHyg
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NC1PiO

SciBooNE (cont)

The definition of the measured events is little unclear:

IV.A --->

IV.D.8 --->

nucleons and mesons. According to our MC simulation,
96% of NCr" events passing our selection cuts have a sin-
ole 77 (85 % from a single 7" without any other mesons
and 11 % from a single 7" with charged mesons) and 4 %
have two m"s. Any 7 emitted from the initial tareet nu-
inelastic scattering). According to our MC simulation,
06% of selected NC7Y events have one w° (91 % from a
single 7 without any other mesons and 5 % from a sin-
ole m” with charged mesons) and 4% have two 7"s. The

&

It means that some cuts are imposed: how they are defined?...
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number of events

NC 1 PiO production

The data presents a challange to Monte Carlo generators of events.
FSI effects like pion absorption and ,,formation zone” are important.

I show predictions from NuWro MC generator of events.
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Other measurements

Neutral current elastic cross section

Results: Flux-averaged MiniBooNE NC elastic differential cross-section
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MiniBooNE measures
both Cerenkov and
scintillation light !
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Charge current Pi+ production (MiniBooNE)

Other measurements
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Note that the measured cross section 1s much larger then MC predictions !
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Other measurements

Ratio CCI1Pi1+/CCQE (MiniBooNE)
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FIG. 1: Observed CClat-like/CCQE-like cross section ratio
on CH.. including both statistical and systematic uncertain-
ties, compared with the MC prediction [f]. The data have
not been corrected for hadronic re-interactions.
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teractions and re-scaled for an isoscalar target.

The results are very useful and widely used in comparisons
because they are free from normalization controversy.
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final state in-
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Monte Carlo generators

* Production of neutrinos (how to constrain
flux uncertainty?)

* interactions
* detector's performance.

All the degrees of freedom must be understood!

MC codes provide a bridge between theory and
experiment:

* MCs contain description of our knowledge
* unexpected events can be a sign of ,,new” physics

(example: excess of low energy electron neutrino
events in MiniBooNE)

[this is an ideal situation: in reality MCs contain many
simplifications...]
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Monte Carlo generators

The market of MCs:

Neut (K2K, SciBooNE, T2K)

Nuance (SK, Minos, MiniBooNE)
GENIE/Neugen (Minos, Minerva, T2K, Nova)
FLUKA (ICARUS)

Tools developed by theorists:

GiBUU
NuWro

It takes years to construct a MC and to test it.

J.T. Sobczyk, Epiphany Conference, Cracow, January 6, 2010
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Monte Carlo generators

Non-trivial differences come from:

RES => how many resonances? interference? non-resonant
background? RES/DIS boundary? i angular distribution?

DIS => hadronization model?

COH => implementation of Rein-Sehgal model? modifications?

Most important differences come from:

Nuclear effects => Fermi gas? spectral function? off-shell effects? A
iIn medium effects? final state interactions? absorption? formation

zone?

There are also ,trivial” differences coming from unknown parameters.
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Monte Carlo generators

Until recently all the MC rely on the Fermi gas (FG) model

* very simple in implementation
* useful as a first approximation, but...

* we know from electron scattering that FG fails to reproduce
exactly inclusive electron data in the quasi-elastic (electron

community language!) region !

How to improve MC performance? Focus on QE reaction.

J.T. Sobczyk, Epiphany Conference, Cracow, January 6, 2010
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Monte Carlo generators

What do we need?

* we would like to have correct description of the integrated
inclusive cross section

* 1t would be nice to have also reliable treatment of low Q2
behavior in the kinematical region of giant resonances.

How to proceed?

Strategy: review appoaches giving rise to good agreement
with electron scattering data and select one which can be
impelemented in MC.
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Monte Carlo generators

An overview of approaches 1s presented in:

Comparison of Models of Neutrino-Nucleus Interactions

S.Boyd'. 8. Dytman’, E. Herndndez' ", I. Sobczyk™ and R. Tacik®

In order to deal with the fact that nucleon before and after interaction are bound
one introduces self-energy which enters the (here non-relativistic) propagator:
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Monte Carlo generators

* Omar Benhar (Rome) calculates the hole SF including short range correlation
contribution. The particle SF (FSI effects) is evaluated in the eikonal approximation.

* Ulrich Mosel (Giessen) includes only real part of self-energy for the hole part
while the density dependent potential are applied for the particle part.

* Jan Ryckebusch (Ghent) describes the struck nucleon within Walecka many body
O-wmodel. Glauber theory 1s used for FSI.

* Jose Udias (Madrid) also uses Walcka mean field theory but the final nucleon is
a solution of the Dirac equation with the same potential.

* Juan Nieves (Valencia) does RPA computations.
* Carlotta Giusti (Pavia) Green function approach

All the approaches claim to be succesfull in dealing with electron data.
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Monte Carlo generators

For Monte Carlo implementation the Omar Benhar's approach seems to be
the simplest one:

* the hole's spectral function is the joint probability distribution to find a nucleon
with given momentum leaving nucleus with a given excitation energy

* the particle's spectral function can be either taken as a free one (Plane Wave

Impulse Approximation) or approximated by a model leading to the simple
folding formula.

J.T. Sobczyk, Epiphany Conference, Cracow, January 6, 2010
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Monte Carlo generators

B i Toley o0 P Calcium (Ca40) target:
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Implementation of the spectral function:

* Intermediate step: ,,effective spectral function”

Monte Carlo generators

(Ankowski, JTS, Phys. Rev. C74 (2006) 054016)
* genuine spectral function in NuWro (works but needs testing)

Energy reconstruction systematics

Work:

Nick Prouse (Msc thesis) +
CA , Dytman, Gallagher

Timescale ~ 3 months

GENIE includes ~partial description
of NN correlation.

Application of PWIA kinematical
Prescription in GENIE, validation
with e- QE and Ev_{reco} systematic
(T2K) at Nick's thesis
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GENIE plans
(from Costas Andreopoulos talk
on October 30, 2009)
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Conclusions

® neutrino interactions in 1 GeV region is an area of intensive activity

* low Q2 for quasi-elastic reaction requires more sophisticated nuclear models

* how important is 2p-2h contribution?... further cross-checks are necessary

* analysis of coherent pion production requires upgraded Monte Carlo generators

* nice agreement between NC1Pi0 data (with all FSI) and MC

* does MiniBooNE understand the flux normalization?...

* Fermi gas model should be substituted in Mcs by Benhar's spectral function approach

* new data is necessary for further progress.
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The end
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