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Introduction

The Large Hadron Collider (LHC) just started operating
e very precise measurments
e need of high accuracy QCD calculations (vs. Tevatron)

e especially in form of Parton Shower Monte Carlo (PS MC)
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Factorization

What enables us the theoretical description of this very complicated
process is the factorization theorems
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We can calculate both
e coefficient functions (hard process)
e parton distribution functions (PDF)
using perturbative QCD



Factorization

e Different factorization schemes — different PDFs, different
coefficient functions

e Both PDF and coefficient functions depend on this scheme

e Physical observables do not depend on factorization scale

The most common scheme is MS scheme
e hard process (coefficient function) is process dependent

e parton distribution function (PDF) process independent



Aims

Our interest is in the PDF part of the pp collisions

PDFs are ruled by QCD evolution equations (DGLAP) — building
blocks for the construction of precise PDF are the evolution kernels

e ultimate aim - construct stochastic simulation of the QCD
evolution in the Next to Leading Order (NLO) of perturbation
theory in fully exclusive form! so far exists only improved LO
MCPS

To do it we need to know the form and the properties of exclusive
NLO evolution kernels

e aim of this presentation - show that within MS factorization
scheme inclusive evolution kernels do not depend on the choice
of evolution time variable used in MC



Framework

Two gluon phase space

d"k
(2m)"

Sudakov parametrisation:

d"k
(2m)"

dip = 26+ (k2) = L2 05+ (K2),

ki = aip+ Bin+ ki1

Two set of variables (evolution time)

e transverse momentum k;

e angular scale a; = ko’} - rapidity related variable y = In|a|
!



General structure of two-gluon real emission diagram

Mo PP/dz/; V O(s(ki, k) < Q)

e the exect form of s(ki, k2) function (enclosing the phase
space) defines the evolution time variable in MC

e V is originating from trace its dimension is Q* it depends on
i, ki, 0

e PP is Pole Part operator extracting poles in ¢



Evolution time

The enclosing of the phase space ©(s(ki, k2) < Q) defines the
evolution variable
We typically use two choices for the evolution time: transverse
momentum k and angular scale a (related directly to rapidity:
y =Infa])

e transverse momentum s(ki, ko) = max{ki, kos }

e angular scale s(ki, ko) = max{a1, a>}

We want to show that within the MS renormalization scheme
both chioces give the same inclusive evolution kernels but
different exclusive kernels



FEvolution time independence

e There are THREE mechanisms allowing the independence
from the choice of evolution time variable

case 1 case 2 case 3

e We show it on a subset of diagrams contributing to NLO
DGLAP kernels



Structure of kernel contributions

After integrating out the transverse degrees of freedom dependency
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The only difference is the additional phase space factor (a;cr2) in
case of angular scale («; = light cone variable of emited gluon)
Two types of contributions

e case 1 - without additional € pole, A=0

e case 2,3 - with additional € pole A# 0



case 1 - A =0 contributions
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Pole Part operator PP kills terms O(e) — for A = 0 case both
schemes

® s(kla k2) = max{lev k2L}
o s(ky, ko) = max{aj, ax} leads to the same result!



case 2,3 - A # Q0 contributions
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» additional mixing term 2AIn(a1a2)
» this is only partial result incomplit!

» take into account virtual diagrams and soft counterterms

We divide the A # 0 contributions into two groups:
e case 2 - cancelation by soft counterterm

e case 3 - cancelation by virtual diagram



case 2 - Bremsstrahlung, A # 0
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e one ¢ pole originating from integration over scale (the 1/q*
term)

o second pole from 1/k? integration



case 2 - Bremsstrahlung

The difference between the two schemes is coming from the phase
space factor
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The soft counterterm is simply the square of LO kernels
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case 2 - Bremsstrahlung

Difference between two schemes exactly compensates!
a ki _ ra ki
Br — rBr - rct - rct

Counterterm is a square of LO contribution — NLO contributions
resembels the structure of LO!



case 3 - Cancellation by virtual diagram

A # 0 + virtual diagram
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e second pole from 1/a? integration (collinear singularuty)



case 3 - Cancellation by virtual diagram

1 22
2t — Tl ~ (8/0 —8In(1—x) + 3> 2In(1 — x)
€ N————

2In(a)«—(a?c)

The difference between two schemes is now compensated by virtual
diagram
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Conclusions

MS inclusive evolution kernels do not depend on the
evolution time variable in MC (k_, a)

unintegrated (exclusive) kernels do depend on the evolution
time variable in MC — understanding of this differences is
critical for the construction of exclusive MC

we investigated also the case of s(k1, k2) = max{vi, va}
(eikonal minus variables v; = k; | /\/a; and full virtuality Q2)
The presented independence is very likely to be valid also for
much more general choice of s(k1, k2) function/evolution time

This analysis is essential in reconciling of MS scheme and
exclusive MC implementation of PDF



Phase space parametrization

Spherical coordinates in k| space
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Structure of kernel contributions

[ ~ PP / don d‘” dkq 1 dhoy K22V ©(max{ kL, kot } < Q)

Each kernel contribution has at least single ¢ pole
This € pole can be extracted

» additional integration variable Q

» dimensionless variables k;; = Qy;
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Structure of kernel contributions for
different evolution times

k| space
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Structure of kernel contributions

Both in k| and a space integrals over transverse degrees of
freedom are equal!

1 1/A
. / dy1dy2y11+26y§+26 W d(max{y1,y»} — 1) = - (6 + B+ )

1 - 1/A
- / dyrdyayy 2y, W §(max{yr, yo} = 1) = = <€ +B+ >

where A, B depend on o, an



