Physics Capabilities of the ATLAS Experiment in Pb+Pb Collisions at the LHC

Dominik Derendarz on behalf of ATLAS Collaboration

Cracow Epiphany Conference, 5-8 January 2010

Heavy Ion Physics

In HI collisions a new form of matter is formed - Quark Gluon Plasma (QGP)

Observables used in HI program:

- . Global observables (N_{ch}, E_T, elliptic flow)
 - " Initial state and dynamics of colliding system
 - ["] Test of theoretical models
 - Jets & photons
 - " Parton energy loss
 - Quarkonia suppression
- " Deconfinement

ATLAS Capabilities in HI collisions

ATLAS Overview

ATLAS Acceptance

First p+p Collisions in ATLAS in 2009

pp(900GeV) 23 November pp(2.36TeV) 8 December

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Excellent performance of ATLAS during first physics runs

2009-12-06, 10:03 CET Run 141749, Event 405315

ATLAS Capabilities in HI collisions

D. Derendarz

Single p+p collision

at 900 GeV

Collision Centrality

$$E_{_{Tot}} = \sum_{cells} E_{_{cell}}$$

N_{part} – number of participant nucleons N_{coll} – number of binary nucleon-nucleon collisions

b – impact parameter

Correlation between the total energy and event centrality parameters (N_{part}, N_{coll}, b)

Charged Particle Multiplicity

Measurement of charged particle multiplicity is crucial to test predictions of different theoretical models.

Charged Particle Multiplicity

Very good accuracy for both techniques

D. Derendarz

Transverse Energy

[%] Transverse energy measurement allows to study medium energy density (e.g. via Bjorken formula) $^{\%}$ dE_T/dη is calculated directly from cell energies measured in electromagnetic and hadronic calorimeter corrected for dead material and detector effects:

Transverse energy in ATLAS calorimeter in p+p (900GeV) data

Performance of the calorimeter during p+p (900GeV) run shows good understanding of detector condition and description in MC simulation

Elliptic Flow

In HI collisions there is observed azimuthal anisotropy
Final state anisotropy can be quantified by studying the Fourier decomposition of particles' azimuthal angle distribution

Elliptic Flow

["] Azimuthal anisotropy of produced particle is well reconstructed ["] Several analysis method using different detector sub-systems

Jets in Pb+Pb Collisions at LHC

Jets well visible in ATLAS detector

Jet Reconstruction

Above 80 GeV nearly 100% efficiency for cone (R=0.4) algorithm

Jet Fragmentation Function

["] Jet fragmentation function D(z) is sensitive to in-medium energy loss ["] D(z) is obtained using reconstructed tracks from inner detector and jets from calorimeter

ATLAS has good capabilities to measure modifications of D(z) due to energy loss effects

Direct photons and photon-Jet

 tagged jets at LHC (5.5 TeV, Pb+Pb) are a direct handle on jet energy loss process in QGP because the medium is nearly transparent to photons

["]-jet events will also serve as a calibration tool for jet reconstruction

Direct photons Reconstruction

The energy depositions in calorimeter strip layer of single photon, ⁰ and

from HI background "A set of cuts based on shower shape allows to distinguish direct photons from neutral hadron background

Direct photons Spectrum in Pb+Pb (5.5TeV) Collisions

Expected direct photon spectrum after 1 month at nominal luminosityExpected rate of direct photons in 0.5nb-1 for Pb+Pb collisions:

- ^{200k} above 30 GeV with S/B>1
- ["]10k above 70 GeV with S/B>4

Quarkonia suppression

Color screening prevents various quarkonia states from being formed.

"Excellent performance of the ATLAS detector during p+p (900GeV) run

" Early analyses of p+p data prove good understanding of detector description and simulation

"ATLAS will be excellent detector for heavy ion physics due to:

hermetic construction

["]fine granularity of tracking and calorimeter systems Heavy ion program of ATLAS is focusing on:

["]Global variables

"High energy jets and photons

⁷ Quarkonia suppression

["]Analysis of p+p data will be used for preparation to Pb+Pb run and will serve as a baseline for Pb+Pb measurements