Limiting fragmentation in e+e- annihilation, ep deep inelastic scattering and pp collisions

Teresa Tymieniecka Warsaw, Poland

- Hypothesis of limiting fragmentation for pp, AA data
- Bialas-Jezabek model
- Motivation
- e+e- data from TASSO and ALEPH
- ep predictions
- Summary and conclusions

Epiphany09, Kraków

Limiting fragmentation in hh collision

The ansatz of limiting fragmentation states that in hadronic collisions, at high enough collision energy, $dn/d\eta$ reaches a fixed curve at $\eta \rightarrow Y_{beam} = Y_{max}$ and

becomes energy independent around $\eta \simeq Y_{beam}$

in contrast to the boost invariance scenario (Bjorken PR D27(1983)140)

AA collisions PHOBOS coll. PRL 91(2003)052303

typical syst. uncertainties are indicated.

In limiting fragmentation region

- the density of charged particles for various energies approaches some universal curve
- increase of region width with energy

One of possible explanations: gluon saturation

= Y_{beam} - Yh

AA collisions PHOBOS coll. PRL 91(2003)052303

Linear dependence is observed

Y - beam rapidity

pp collisions UA5 coll. Z.Phys. C33(1986)1

The limiting fragmentation observed in pp, π -emulsion, p-emulsion.

i.e. the slope is constant

Białas-Jeżabek model

 W_2

 W_1

Y_{beam} - y

particle density

- multiple gluon exchange between partons of the colliding objects creating the colour charges
- followed by the subsequent radiation of hadronic clusters

PL B590 (2004) 233

described by bremsstrahlung relation

This leads to:

• Linear increase of rapidity spectra

 $d\sigma/dy = Ay + B$

• Increase of limiting fragmentation width and plateau height with energy

$A = \lambda a b$

Slope A in the Białas-Jeżabek model

 $\mathbf{A} = \boldsymbol{\lambda} \cdot \mathbf{a} \cdot \mathbf{b}$

- **λ** fraction of "active" partons which participates in collision,
- a parton density per unit of rapidity,
- **b** density of emitted hadrons per unit of rapidity.

a, **b** – universal quantities, the same for e^-e^+ , πp , pp, AA

Asymmetric collisions (pd, γp, ep) <-- leakage between hemispheres can be important Bialas, Czyz, Acta.Phys.P B36(2005)905

ep scattering defined by W and Q^2

T.Tymieniecka

Epiphany09, Kraków

Rapidity of particles defines their expected features,

T.Tymieniecka

Rapidity of particles defines their expected features,

Method

Density of charged hadrons as a f (rapidity) is investigated

Study of the slope value in the limiting fragmentation region for e+e- and ep

for ep

- as f(E_{beam}) for e+e-●
- as f(W) for fixed Q^2 values as $f(Q^2)$ for fixed W values
- comparison with $p\overline{p}$ •

TASSO e⁺e⁻ data at PETRA

K.Genser, Thesis, DESY F1-89-01(1989)

Trust axis is used

Data are folded around $y_h=0$ slope — divided by 2

The uncertainties should include different points taken into fit 0.07

y_h

e+e- TASSO and ALEPH data

Conclusion from e+e- data

One hemisphere	
2 E _{beam}	Slope A
14 GeV	1.18±0.07
22 GeV	1.27±0.07
35 GeV	1.35±0.05
44 GeV	1.34±0.07
91.6	1.55±0.01

- Slope is weakly dependent on energy
- Small deviation from linear dependence on rapidity (S-shape)
- Width and height of limiting fragmentation region is increasing with energy

Slope for pp data A= 0.72 ± 0.05

A(e+e-): A($p\overline{p}$) = λ (e+e-): λ ($p\overline{p}$) = 1:0.5

fraction of the active partons

NC deep inelastic scattering

Described by Q² and W Character of the exchanged boson changes with Q²

Contribution from

- $Q^2 \le 20 \text{ GeV}^2$ resolved photons
- $20 < Q^2 < 1000 \text{ GeV}^2$ point like photon
- $Q^2 \geq 1000 \text{ GeV}^2 \qquad Z^0$

Calculations done for $Q^2 = 4^2$, 14^2 , 90^2 GeV²

To compare with $e^- e^+$ data Q=2 E_{beam}

Epiphany09, Kraków

ր/nb dn/dղ

Existing data H1 coll, NP B485 (1995)3

Prediction:

ARIADNE **LEPTO-MEPS** colour dipole model matrix element and parton shower

Lund string

hadronisation

ep scattering (predictions)

ep scattering (predictions)

Epiphany09, Kraków

ep scattering (predictions)

W fixed

different Q²

From the Bialas-Jazabek model fraction of active partons changes with Q²

Summary and conclusions

Comparison of e+e-, ep and $p\overline{p}$ in the region of limiting fragmentation

The slope parameter from Bialas-Jezabek model is used

- slope is steeper for e+e- than for $p\overline{p}$
- slope agrees for ep with the one for e+e- at $Q^2 << M_Z$ is different at $Q^2 \approx M_Z$

It is of interest to check on the large sample of data accumulated at HERA

AA collisions PHOBOS coll. PR C74(2006)021902

A similar study for one hemisphere of AA, ee and pp :

- ee overlapped with AA
- the slope for ee steeper than for pp

e+e- data

