Limiting fragmentation in $\mathbf{e}^{+} \mathbf{e}^{-}$annihilation, ep deep inelastic scattering and $\mathbf{p} \bar{p}$ collisions

Teresa Tymieniecka
Warsaw, Poland

- Hypothesis of limiting fragmentation for pp, AA data
- Bialas-Jezabek model
- Motivation
- e+e- data from TASSO and ALEPH
- ep predictions
- Summary and conclusions

Limiting fragmentation in hh collision

The ansatz of limiting fragmentation states that in hadronic collisions, at high enough collision energy, $\mathrm{dn} / \mathrm{d} \eta$ reaches a fixed curve at $\eta \rightarrow Y_{\text {beam }}=Y_{\text {max }}$ and becomes energy independent around $\quad \eta \simeq Y_{\text {beam }}$
in contrast to the boost invariance scenario (Bjorken PR D27(1983)140)

AA collisions

PHOBOS coll. PRL 91(2003)052303

AA collisions

PHOBOS coll. PRL 91(2003)052303

Linear dependence is observed

Y - beam rapidity

p \bar{p} collisions UA5 coll. Z.Phys. C33(1986)1

Białas-Jeżabek model

$$
W_{2}>W_{1}
$$

$Y_{\text {beam }}-\boldsymbol{y}$

PL B590 (2004) 233
proposed for pp and AA collisions symmetric collisions to describe the soft particle production in two steps:

- multiple gluon exchange between partons of the colliding objects
creating the colour charges
- followed by the subsequent radiation of hadronic clusters
- described by bremsstrahlung relation

This leads to:

- Linear increase of rapidity spectra

$$
\mathrm{d} \sigma / \mathrm{d} y=\mathrm{A} y+\mathrm{B}
$$

- Increase of limiting fragmentation width and plateau height with energy

$$
A=\lambda a b
$$

Slope A in the Białas-Jeżabek model

$A=\lambda \cdot a \cdot b$
λ fraction of "active" partons which participates in collision,
a parton density per unit of rapidity,
b density of emitted hadrons per unit of rapidity.
$a, b-$ universal quantities, the same for $e^{-} e^{+}, \pi p, p p, A A$

Asymmetric collisions (pd, $\gamma \mathbf{p}, \mathrm{ep}$)
<-- leakage between hemispheres can be important Bialas, Czyz, Acta.Phys.P B36(2005)905
ep scattering defined by \mathbf{W} and Q^{2}

Similar to $\mathbf{e}^{+} \mathbf{e}^{-}$

[^0]Epiphany09, Kraków

Similar to $\mathbf{e}^{+} \mathbf{e}^{-}$

Rapidity of particles defines their expected features,

Height of plateau are sensitive to:

- QCD Comptons
- BGF contribution ($\gamma \mathbf{g} \rightarrow \mathbf{q q}$)

Method

Density of charged hadrons as a f (rapidity) is investigated
Study of the slope value in the limiting fragmentation region for e+e- and ep

- as $f\left(E_{\text {beam }}\right)$
for $\mathrm{e}+\mathrm{e}$ -

- comparison with $\mathbf{p} \overline{\mathrm{p}}$

TASSO $\mathbf{e}^{+} \mathbf{e}^{-}$data at PETRA

K.Genser, Thesis, DESY F1-89-01(1989)

Trust axis is used
Data are folded around $y_{h}=0$
slope - divided by 2
The uncertainties should include different points taken into fit

$\mathbf{e}^{+} \mathbf{e}^{-}$TASSO and ALEPH data

K.Genser, Thesis, DESY F1-89-01(1989)

ALEPH coll., PhysReport 294 (1998) 1

$$
\begin{aligned}
\mathrm{Y}=\ln \left(\mathrm{W} / \mathrm{m}_{\pi}\right) & +0.2 \text { for ALEPH } \\
& +0 \quad \text { TASSO }
\end{aligned}
$$

Conclusion from $\mathbf{e}^{+} \mathbf{e}^{-}$data

One hemisphere

2 Ebeam Slope A

$14 \mathrm{GeV} \quad 1.18 \pm 0.07$
$22 \mathrm{GeV} \quad 1.27 \pm 0.07$
$35 \mathrm{GeV} \quad 1.35 \pm 0.05$
$44 \mathrm{GeV} \quad 1.34 \pm 0.07$
$91.6 \quad 1.55 \pm 0.01$

- Slope is weakly dependent on energy
- Small deviation from linear dependence on rapidity (S-shape)
- Width and height of limiting fragmentation region is increasing with energy

Slope for $p \bar{p}$ data

 $\mathrm{A}=0.72 \pm 0.05$$$
A(\mathrm{e}+\mathrm{e}-): A(\mathrm{p} \overline{\mathrm{p}})=\lambda(\mathrm{e}+\mathrm{e}-): \lambda(\mathrm{p} \overline{\mathrm{p}})=1: 0.5
$$

fraction of the active partons

NC deep inelastic scattering

Described by Q^{2} and W Character of the exchanged boson changes with Q^{2}

Contribution from

$$
\begin{array}{ll}
\mathrm{Q}^{2} \leq 20 \mathrm{GeV}^{2} & \text { resolved photons } \\
20<\mathrm{Q}^{2}<1000 \mathrm{GeV}^{2} & \text { point like photon } \\
\mathrm{Q}^{2} \geq 1000 \mathrm{GeV}^{2} & \mathrm{Z}^{0}
\end{array}
$$

Calculations done for $\mathrm{Q}^{2}=42,14^{2}, 90^{2} \mathrm{GeV}^{2}$

To compare with $\mathrm{e}^{-} \mathrm{e}^{+}$data $\quad \mathrm{Q}=2 \mathrm{E}_{\text {beam }}$

Existing data
 H1 coll, NP B485 (1995)3

Prediction:

ARIADNE LEPTO-MEPS

Lund string
colour dipole model matrix element and parton shower
hadronisation

ep scattering (predictions)

fixed $Q^{2} \approx 16,200,8000 \mathrm{GeV}^{2}$
different $\mathrm{W}=240$ or 90 GeV
z^{0} dominates
point like γ
resolved γ
for $Q^{2} \rightarrow M_{Z}^{2} \quad$ differences in
predictions
T.Tymieniecka

ep scattering (predictions)

different $\mathrm{W}=240$ or 90 GeV

The straight lines represent slopes obtained from p $\overline{\mathrm{p}}$ data ($\cdot \cdots \cdots$.....) and $\mathrm{e}^{-} \mathrm{e}^{+}$data (- -.........)
at the given $\mathrm{Q}=2 \mathrm{E}_{\text {beam }}$
\downarrow the origin of the Breit frame

ep scattering (predictions)

W fixed different \mathbf{Q}^{2}

From the Bialas-Jazabek model fraction of active partons changes with Q^{2}

Summary and conclusions

Comparison of $e+e-$, ep and $p \bar{p}$ in the region of limiting fragmentation
The slope parameter from Bialas-Jezabek model is used

- slope is steeper for $e+e$ - than for $p \bar{p}$
- slope agrees for ep with the one for $e+e$ - at $Q^{2} \ll M_{Z}$ is different at $Q^{2} \approx M_{Z}$

It is of interest to check on the large sample of data accumulated at HERA

AA collisions

A similar study for one hemisphere of $A A$, ee and pp :

- ee overlapped with AA
- the slope for ee steeper than for pp

$\mathbf{e}^{+} \mathbf{e}^{-}$data

[^0]: T.Tymieniecka

