QCD factorization beyond leading twist in exclusive processes: ρ_T -meson production

Lech Szymanowski

Soltan Institute for Nuclear Studies, Warsaw

Epiphany, Kraków 2009

in collaboration with I. Anikin (Dubna), D. Yu. Ivanov (SIM, Novosibirsk), B. Pire (CPhT, Palaiseau), and S. Wallon (LPT, Orsay)

1/34

- Since a decade, there have been much developments in hard exclusive processes.
 - $\bullet\,$ form factors, Distribution Amplitudes $\rightarrow\,$ Generalized Distribution Amplitudes
 - DVCS \rightarrow Generalized Parton Distributions, Transition Distribution Amplitudes
- The key tool is the collinear factorization

- Experimental tests are possible in fixed target experiments
 - $e^{\pm}p$: HERA (HERMES), JLab, COMPASS...

as well as in colliders, mainly for medium s

- $e^{\pm}p$ colliders: HERA (H1, ZEUS)
- e^+e^- colliders: LEP, Belle, BaBar, BEPC
- Collinear factorization has been proven only for specific cases:
 e.g.: ρ_T production cannot directly be factorized (appearance of end point singularities)
 - \Rightarrow improvement needed for a consistent approach of exclusive processes

Our studies attempt to describe exclusive processes involving the production of ρ -mesons in diffraction-type experiment.

We choose $t = t_{min}$ for simplicity.

• $\gamma^*(q) + \gamma^*(q') \rightarrow \rho_T(p_1) + \rho(p_2)$ process in $e^+ e^- \rightarrow e^+ e^- \rho_T(p_1) + \rho(p_2)$ with double tagged lepton at ILC

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨー

4 / 34

• $\gamma^*(q) + P \rightarrow \rho_T(p_1) + P$ at HERA

Polarization effects in $\gamma^*\,P\to\rho\,P$ at HERA

- one can experimentally measure all spin density matrix elements
- at $t = t_{min}$ one can experimentally distinguish

$$\begin{cases} \gamma_L^* \to \rho_L : \text{ dominates } (\text{twist 2 dominance}) \\ \gamma_T^* \to \rho_T : \text{ sizable } (\text{twist 3}) \end{cases}$$

• S-channel helicity conservation:

$$\begin{cases} \gamma_L^* \to \rho_L & (\equiv T_{00}) \\ \gamma_T^* \to \rho_T, \end{cases}$$

Dominate with respect to all other transitions. Experimentally, $\gamma_T^* \to \rho_T$ is dominated by $\gamma_{T(-)}^* \to \rho_{T(-)}$ and $\gamma_{T(+)}^* \to \rho_{T(+)}$ $(\equiv T_{11})$

The processes with vector particle such as rho-meson probes deeper into the fine features of QCD.

It deserves theoretical development to describe HERA data in its special kinematical range:

- large $s_{\gamma^*P} \Rightarrow$ small-x effects expected, within k_t -factorization
- large $Q^2 \Rightarrow$ hard scale \Rightarrow perturbative approach and collinear factorization \Rightarrow the ρ can be described through its chiral even Distribution Amplitudes

$$\left\{ \begin{array}{ll} \rho_L & {\rm twist} \ 2 \\ \rho_T & {\rm twist} \ 3 \end{array} \right.$$

The main ingredient is the $\gamma^* \rightarrow \rho$ impact factor

- For ρ_T, special care is needed: a pure 2-body description would violate gauge invariance.
- We show that:
 - Including in a consistent way all twist 3 contributions, i.e. 2-body and 3-body correlators, gives a gauge invariant impact factor
 - Our treatment is free of end-point singularities and does not violates the QCD factorization

SIMPLEST OBJECT !!

QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in *t* channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominate with respect to Born order at large relative rapidity.

イロン イヨン イヨン イヨン

Impact factor for exclusive processes ${\it k_{T}}$ factorization

 $\gamma^*\,\gamma^* \to \rho\,\rho$ as an example

- Use Sudakov decomposition $k = \alpha p_1 + \beta p_2 + k_\perp$ $(p_1^2 = p_2^2 = 0, 2p_1 \cdot p_2 = s)$
- write $d^4k = rac{s}{2} \, dlpha \, deta \, d^2k_\perp$

replacements nuclear since solutions ($\epsilon_{NS}^{up} = \frac{2}{s} p_2$, $\epsilon_{NS}^{down} = \frac{2}{s} p_1$) dominates at large s

impact representation $\underline{k} = Eucl. \leftrightarrow k_{\perp} = Mink.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

9/34

$$\mathcal{M} = is \int \frac{d^2 \underline{k}}{(2\pi)^2 \underline{k}^2 (\underline{r} - \underline{k})^2} \Phi^{\gamma^*(q_1) \to \rho(p_1^{\rho})}(\underline{k}, \underline{r} - \underline{k}) \Phi^{\gamma^*(q_2) \to \rho(p_2^{\rho})}(-\underline{k}, -\underline{r} + \underline{k})$$

The $\gamma^*_{L,T}(q)g(k_1)
ightarrow
ho_{L,T} g(k_2)$ impact factor is normalized as

$$\Phi^{\gamma^* \to \rho}(\underline{k}^2) = e^{\gamma^* \mu} \frac{1}{2s} \int \frac{d\kappa}{2\pi} \operatorname{Disc}_{\kappa} \mathcal{S}_{\mu}^{\gamma^* g \to \rho g}(\underline{k}^2),$$

Gauge invariance

- QCD gauge invariance (probes are colorless) \Rightarrow impact factor should vanish when $\underline{k} \rightarrow 0$ or $\underline{r} - \underline{k} \rightarrow 0$
- In the following we will restrict ourselve to the case $t = t_{min}$, i.e. to $\underline{r} = 0$

This kinematics takes into account skewedness effects along p_2 \Rightarrow restriction to the transitions $\begin{cases} 0 \rightarrow 0 & (twist 2) \\ (+ \text{ or } -) \rightarrow (+ \text{ or } -) & (twist 3) \end{cases}$

• At twist 3 level (for $\gamma_T^* \rightarrow \rho_T$ transition), gauge invariance is a non trivial statement which requires 2 and 3 body correlators

• The impact factor can be written as

• At the 2-body level:

$$S_{q\bar{q}}(l) = \int d^4 z \, e^{-il \cdot z} \langle \rho(p) | \psi(0) \, \bar{\psi}(z) | 0 \rangle,$$

• H and S are related by $\int d^4l$ and by the summation over spinor indices

1 - Momentum factorization (1)

• Use Sudakov decomposition in the form $(p = p_1, n = 2 p_2/s)$

$$l_{\mu} = x p_{\mu} + l_{\mu}^{\perp} + (l \cdot p) n_{\mu}, \quad x = l \cdot n$$

scaling: 1 $1/Q$ $1/Q^2$

• decompose H(k) around the p direction:

$$\begin{split} H(l) &= H(xp) + \left. \frac{\partial H(l)}{\partial l_{\alpha}} \right|_{l=xp} (l-x\,p)_{\alpha} + \dots \text{ with } (l-x\,p)_{\alpha} \approx l_{\alpha}^{\perp} \\ \text{twist 2} & \text{kinematical twist 3 and genuine twist 3} \end{split}$$

• In Fourier space, the twist 3 term l^{\perp}_{α} turns into a derivative of the soft term \Rightarrow one will deal with $\int d^4z \ e^{-il \cdot z} \langle \rho(p) | \psi(0) \ i \ \overleftrightarrow{\partial_{\alpha^{\perp}}} \overline{\psi}(z) | 0 \rangle$

1 - Momentum factorization (2)

write

$$d^4l \longrightarrow d^4l \,\, \delta(x - l \cdot n) \,\, {dx}$$

• $\int d^4 l \, \delta(x-l\cdot n)$ is then absorbed in the soft term:

$$\begin{split} (\tilde{S}_{q\bar{q}},\partial_{\perp}\tilde{S}_{q\bar{q}}) &\equiv \int d^{4}l\,\delta(x-l\cdot n)\int d^{4}z\,e^{-il\cdot z}\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(z)|0\rangle \\ &= \int \frac{d\lambda}{2\pi}\,e^{-i\lambda x}\int d^{4}z\,\delta^{(4)}(z-\lambda n)\,\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(z)|0\rangle \\ &= \int \frac{d\lambda}{2\pi}\,e^{-i\lambda x}\langle\rho(p)|\psi(0)\,(1,\,i\,\overleftrightarrow{\partial_{\perp}})\bar{\psi}(\lambda n)|0\rangle \end{split}$$

• $\int dx$ performs the longitudinal momentum factorization

Collinear factorization Light-Cone Collinear approach: 2 steps of factorization (2-body case)

2 - Spinorial (and color) factorization PSfrag replacements

acements Fierz decomposition of the Dirac (and color) matrices $\psi(0)\,ar\psi(z)$ and

• Φ has now the simple factorized form:

$$\Phi = \int d\boldsymbol{x} \, \left\{ \operatorname{tr} \left[H_{q\bar{q}}(\boldsymbol{x} \, \boldsymbol{p}) \, \Gamma \right] \, S^{\Gamma}_{q\bar{q}}(\boldsymbol{x}) + \operatorname{tr} \left[\partial_{\perp} H_{q\bar{q}}(\boldsymbol{x} \, \boldsymbol{p}) \, \Gamma \right] \, \partial_{\perp} S^{\Gamma}_{q\bar{q}}(\boldsymbol{x}) \right\}$$

 $\Gamma=\gamma^{\mu}~{\rm and}~\gamma^{\mu}~\gamma^{5}~{\rm matrices}$

$$S_{q\bar{q}}^{\Gamma}(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \Gamma \psi(0) | 0 \rangle$$

$$\partial_{\perp} S_{q\bar{q}}^{\Gamma}(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \Gamma i \stackrel{\longleftrightarrow}{\partial_{\perp}} \psi(0) | 0 \rangle$$

 \bullet choose axial gauge condition for gluons, i.e. $n\cdot A=0 \Rightarrow$ no Wilson line

14 / 34

Factorization of 3-body contributions

- 3-body contributions start at genuine twist 3
 ⇒ no need for Taylor expansion
- Momentum factorization goes in the same way as for 2-body case
- Spinorial (and color)PSactorization distantial ar:

2-body non-local correlators PL "

twist 2

PT

kinematical twist 3 (WW) genuine twist 3 genuine + kinematical twist 3

$$\langle \rho(p) | \bar{\psi}(z) \gamma_{\mu} \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} \left[\frac{\varphi_{1}(x) \left(e^{*} \cdot n \right) p_{\mu} + \varphi_{3}(x) e_{\mu}^{*T} \right]$$

axial correlator

vector correlator

$$\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_\rho f_\rho \, i \, \varphi_A(x) \, \varepsilon_{\mu\lambda\beta\delta} \, e_\lambda^{*T} \, p_\beta \, n_\delta$$

• vector correlator with transverse derivative

$$\langle \rho(p) | \bar{\psi}(z) \gamma_{\mu} i \ \overleftarrow{\partial_{\alpha}^{\perp}} \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_{\rho} f_{\rho} \varphi_{1}^{T}(x) p_{\mu} e_{\alpha}^{*T}$$

• axial correlator with transverse derivative

$$\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu i \partial_\alpha^\perp \psi(0) | 0 \rangle \stackrel{\mathcal{F}}{=} m_\rho f_\rho i \varphi_A^T(x) p_\mu \varepsilon_{\alpha\lambda\beta\delta} e_\lambda^{*T} p_\beta n_\delta,$$

where x $(\bar{x} = 1 - x) =$ momentum fraction along $p \equiv p_1$ of the quark (antiquark) and $\stackrel{\mathcal{F}}{=} \int_0^1 dx \exp{[ix \, p \cdot z]}$, with $z = \lambda n$

3-body non-local correlators genuine twist 3

• vector correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_{\mu} g A_{\alpha}^T(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_{\rho} f_3^V B(x_1, x_2) p_{\mu} e_{\alpha}^{*T},$$

• axial correlator

$$\langle \rho(p) | \bar{\psi}(z_1) \gamma_5 \gamma_\mu g A^T_\alpha(z_2) \psi(0) | 0 \rangle \stackrel{\mathcal{F}_2}{=} m_\rho f_3^A \, i \, D(x_1, x_2) \, p_\mu \, \varepsilon_{\alpha \lambda \beta \delta} \, e_\lambda^{*T} \, p_\beta \, n_\delta,$$

where x_1 , \bar{x}_2 , $x_2 - x_1 = quark$, antiquark, gluon momentum fraction

and
$$\stackrel{\mathcal{F}_2}{=} \int_{0}^{1} dx_1 \int_{0}^{1} dx_2 \exp\left[i \, x_1 \, p \cdot z_1 + i(x_2 - x_1) \, p \cdot z_2\right], \text{ with } z_{1,2} = \lambda n$$

From C-conjugation on the previous correlators, one gets:

• 2-body correlators:

$$\begin{array}{rcl} \varphi_{1}(y) & = & \varphi_{1}(1-y) \\ \varphi_{3}(y) & = & \varphi_{3}(1-y) \\ \varphi_{A}(y) & = & -\varphi_{A}(1-y) \\ \varphi_{1}^{T}(y) & = & -\varphi_{1}^{T}(1-y) \\ \varphi_{A}^{T}(y) & = & \varphi_{A}^{T}(1-y) \end{array}$$

• 3-body correlators:

$$B(x_1, x_2) = -B(1 - x_2, 1 - x_1)$$

$$D(x_1, x_2) = D(1 - x_2, 1 - x_1)$$

Equations of motion

Dirac equation leads to

twist 2 kinematical twist 3 (WW) genuine twist 3 genuine + kinematical twist 3

• Apply the Fierz decomposition to the above 2 and 3-body correlators

$$- \langle \psi(x)\,\bar{\psi}(z)\rangle = \frac{1}{4} \langle \bar{\psi}(z)\gamma_{\mu}\psi(x)\rangle\gamma_{\mu} + \frac{1}{4} \langle \bar{\psi}(z)\gamma_{5}\gamma_{\mu}\psi(x)\rangle\gamma_{\mu}\gamma_{5}.$$
on of motion:
$$\zeta_{3,\rho}^{V,A} = f_{3,\rho}^{V,A}/f_{\rho}$$

•
$$\Rightarrow$$
 Equation of motion: $\zeta_{3,}^{V}$

$$\bar{y}_1 \varphi_3(y_1) + \bar{y}_1 \varphi_A(y_1) + \varphi_1^T(y_1) + \varphi_A^T(y_1) = \int dy_2 \left[\zeta_3^V B(y_1, y_2) + \zeta_3^A D(y_1, y_2) \right]$$

$$y_1 \varphi_3(y_1) - y_1 \varphi_A(y_1) - \varphi_1^T(y_1) + \varphi_A^T(y_1) = \int dy_2 \left[-\zeta_3^V B(y_2, y_1) + \zeta_3^A D(y_2, y_1) \right]$$

• In WW approximation: genuine twist 3 = 0

without derivative

acements actical trick for computing $\partial_\perp rac{PSf}{PSf}$ rase replayed intentity

Computation and results 3-body Diagrams

• "abelian" type

• "non-abelian" type

n-independence

$$e_{\mu}^{*T} = e_{\mu}^{*} - p_{\mu} e^{*} \cdot n \quad \text{keeping} \quad n \cdot p = 1$$

$$\frac{d\mathcal{A}}{dn^{\mu}} = 0, \quad \text{where} \quad \frac{d}{dn^{\mu}} = \frac{\partial}{\partial n^{\mu}} + e_{\mu}^{*} \frac{\partial}{\partial (e^{*} \cdot n)}$$

$$\operatorname{tr} \left[\operatorname{H}_{3\rho}(y_{1}, y_{2}) \operatorname{p}^{\rho} \not{p} \right] \operatorname{B}(y_{1}, y_{2}) =$$

$$\frac{1}{y_{1} - y_{2}} \left(\operatorname{tr} \left[\operatorname{H}_{2}(y_{1}) \not{p} \right] - \operatorname{tr} \left[\operatorname{H}_{2}(y_{2}) \not{p} \right] \right) B(y_{1}, y_{2}),$$

 • vector correlators

$$\frac{d}{dy_1}\varphi_1^T(y_1) = -\varphi_1(y_1) + \varphi_3(y_1)$$
$$-\zeta_3^V \int_0^1 \frac{dy_2}{y_2 - y_1} \times (\theta(y_2 - y_1)B(y_1, y_2) + \theta(y_1 - y_2)B(y_2, y_1))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

23 / 34

axial correlators

$$\frac{d}{dy_1}\varphi_A^T(y_1) = \varphi_A(y_1) - \zeta_3^A \int_0^1 \frac{dy_2}{y_2 - y_1} \left(\theta(y_2 - y_1)D(y_1, y_2) + \theta(y_1 - y_2)D(y_2, y_1)\right)$$

• B = 0 = D

$$\begin{split} \varphi_{3/A}^{WW}(y) &= \frac{1}{2} \left[\int_{0}^{y} \frac{dv}{\bar{v}} \varphi_{1}(v) \pm \int_{y}^{1} \frac{dv}{v} \varphi_{1}(v) \right] \\ \varphi_{1/A}^{TWW}(y) &= \frac{1}{2} \left[-\bar{y} \int_{0}^{y} \frac{dv}{\bar{v}} \varphi_{1}(v) \pm y \int_{y}^{1} \frac{dv}{v} \varphi_{1}(v) \right] \end{split}$$

< □ > < 部 > < 書 > < 書 > 書 の Q (~ 24 / 34

Solutions: genuine twist-3

•
$$\varphi_{3}(y) = \varphi_{3}^{WW}(y) + \varphi_{3}^{gen}(y)$$

 $\varphi_{3}^{gen}(y) = -\frac{1}{2} \int_{y}^{1} \frac{du}{u} \left[\int_{0}^{u} dy_{2} \frac{d}{du} (\zeta_{3}^{V}B - \zeta_{3}^{A}D)(y_{2}, u) - \int_{u}^{1} \frac{dy_{2}}{y_{2} - u} (\zeta_{3}^{V}B - \zeta_{3}^{A}D)(u, y_{2}) - \int_{0}^{u} \frac{dy_{2}}{y_{2} - u} (\zeta_{3}^{V}B - \zeta_{3}^{A}D)(y_{2}, u) \right]$
 $-\frac{1}{2} \int_{0}^{y_{1}} \frac{du}{\overline{u}} \left[\int_{u}^{1} dy_{2} \frac{d}{du} (\zeta_{3}^{V}B + \zeta_{3}^{A}D)(u, y_{2}) - \int_{u}^{1} \frac{dy_{2}}{y_{2} - u} (\zeta_{3}^{V}B + \zeta_{3}^{A}D)(u, y_{2}) - \int_{0}^{u} \frac{dy_{2}}{y_{2} - u} (\zeta_{3}^{V}B + \zeta_{3}^{A}D)(u, y_{2}) - \int_{0}^{u} \frac{dy_{2}}{y_{2} - u} (\zeta_{3}^{V}B + \zeta_{3}^{A}D)(y_{2}, u) \right]$
• $\varphi_{1}^{T}(y) = \varphi_{1}^{TWW}(y) + \varphi_{1}^{Tgen}(y)$
 $\varphi_{1}^{Tgen}(y) = \int_{0}^{y} du \varphi_{3}^{gen}(u) - \zeta_{3}^{V} \int_{0}^{y} dy_{1} \int_{y}^{1} dy_{2} \frac{B(y_{1}, y_{2})}{y_{2} - y_{1}}$

 \bullet the corresponding expressions for $\varphi^{gen}_A(y)$ and $\varphi^{T\,gen}_A(y)$:

$$\begin{aligned} \varphi_A(y) &= \varphi_A^{WW}(y) + \varphi_A^{gen}(y) \\ \varphi_A^T(y) &= \varphi_A^{TWW}(y) + \varphi_A^{Tgen}(y) \end{aligned}$$

are obtained by the substitutions:

$$\begin{array}{lll} \varphi_A^{gen}(y) & \Longleftrightarrow_{\zeta_3^V B \leftrightarrow \zeta_3^A D} & \varphi_3^{gen}(y) \\ \varphi_A^{T\,gen}(y) & \Longleftrightarrow_{\zeta_3^V B \leftrightarrow \zeta_3^A D} & \varphi_1^{T\,gen}(y) \end{array}$$

< ロ ト < 部 ト < 差 ト < 差 ト 差 の Q (や 26 / 34 $\gamma_L^*
ightarrow
ho_L$ impact factor

$$\Phi^{\gamma_L^* \to \rho_L}(\underline{k}^2) = -i \frac{4C_F e_q f_\rho}{Q} \int dx \,\varphi_1(x) \frac{\underline{k}^2}{x \,\overline{x} \,Q^2 + \underline{k}^2}$$

pure twist 2 scaling

 $\gamma_T^* \rightarrow \rho_T$ impact factor:

Spin Non-Flip/Flip separation appears

$$\Phi^{\gamma_T^* \to \rho_T}(\underline{k}^2) = \Phi_{n.f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) T_{n.f.} + \Phi_{f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) T_f$$

where

$$T_{n.f.} = -(e_{\gamma} \cdot e^*) \quad \text{and} \quad T_{f.} = \frac{(e_{\gamma} \cdot k)(e^*k)}{\underline{k}^2} + \frac{(e_{\gamma} \cdot e^*)}{2}$$

non-flip transitions
$$\begin{cases} + \to + \\ - \to - \end{cases} \quad \text{flip transitions} \begin{cases} + \to - \\ - \to + \end{cases}$$

Computation and results

Results: $\gamma_T^* \rightarrow \rho_T$ impact factor

$$\begin{split} & \Phi_{n,f.}^{\gamma_{T}^{\bullet} \to \rho_{T}}(\underline{k}^{2}) \\ = & -\frac{m_{\rho}f_{\rho}}{2\sqrt{2}Q^{2}} \left\{ -2\,C_{F}\int dx_{1}\frac{\left(\underline{k}^{2}+2\,Q^{2}\,x_{1}\,(1-x_{1})\right)\underline{k}^{2}}{x_{1}\,(1-x_{1})\,(\underline{k}^{2}+Q^{2}\,x_{1}\,(1-x_{1}))^{2}} \left[(2x_{1}-1)\,\varphi_{1}^{T}(x_{1})+\varphi_{A}^{T}(x_{1}) \right] \\ & +2\,\zeta\int dx_{1}\,dx_{2}\,[B\,(x_{1},x_{2})-D\,(x_{1},x_{2})]\,\frac{x_{1}\,(1-x_{1})\,\underline{k}^{2}}{\underline{k}^{2}+Q^{2}\,x_{1}\,(1-x_{1})} \left[\frac{(2\,C_{F}-N_{c})Q^{2}}{\underline{k}^{2}\,(x_{1}-x_{2}+1)+Q^{2}\,x_{1}\,(1-x_{2})} \right. \\ & \left. -\frac{N_{c}\,Q^{2}}{x_{2}\underline{k}^{2}+Q^{2}\,x_{1}\,(x_{2}-x_{1})} \right] - 2\,\zeta\int dx_{1}\,dx_{2}\,[B\,(x_{1},x_{2})+D\,(x_{1},x_{2})] \left[\frac{2\,C_{F}+N_{c}}{1-x_{1}} \right. \\ & \left. +\frac{x_{1}\,Q^{2}}{\underline{k}^{2}+Q^{2}\,x_{1}\,(1-x_{1})} \left(\frac{(2\,C_{F}-N_{c})\,x_{1}\,\underline{k}^{2}}{(x_{1}-x_{2}+1)+Q^{2}\,x_{1}\,(1-x_{2})} - 2C_{F} \right) \right. \\ & \left. +N_{c}\,\frac{(x_{1}-x_{2})\,(1-x_{2})}{1-x_{1}}\,\frac{Q^{2}}{\underline{k}^{2}\,(1-x_{1})+Q^{2}\,(x_{2}-x_{1})\,(1-x_{2})} \right] \right\} \end{split}$$

and

$$\begin{split} \Phi_{f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) &= -\frac{m_\rho f_\rho}{2\sqrt{2} Q^2} \left\{ 4 C_F \int dx_1 \frac{\underline{k}^2 Q^2}{(\underline{k}^2 + Q^2 x_1 (1 - x_1))^2} \left[\varphi_A^T(x_1) - (2x_1 - 1) \varphi_1^T(x_1) \right] \right. \\ &- 4 \zeta \int dx_1 \, dx_2 \frac{x_1 \, \underline{k}^2}{\underline{k}^2 + Q^2 x_1 (1 - x_1)} \left[D\left(x_1, x_2\right) \left(-x_1 + x_2 - 1\right) + B\left(x_1, x_2\right) \left(x_1 + x_2 - 1\right) \right] \\ &\times \left[\frac{(2 \, C_F - N_c) Q^2}{\underline{k}^2 \left(x_1 - x_2 + 1\right) + Q^2 x_1 (1 - x_2)} - \frac{N_c \, Q^2}{x_2 \, \underline{k}^2 + Q^2 x_1 (x_2 - x_1)} \right] \right\} \\ &\quad \left. \left\{ - \frac{(2 \, C_F - N_c) Q^2}{\underline{k}^2 \left(x_1 - x_2 + 1\right) + Q^2 x_1 (1 - x_2)} - \frac{N_c \, Q^2}{x_2 \, \underline{k}^2 + Q^2 x_1 (x_2 - x_1)} \right] \right\} \end{split}$$

29/34

WW limit

- In the WW limit, only the twist 2 and kinematical twist 3 terms are kept.
- The only remaining contributions come from the two-body correlators
- non-flip transition

$$\begin{split} \Phi_{n.f.}^{\gamma_T^{*} \to \rho_T}(\underline{k}^2) &= -\frac{-e \, m_{\rho} f_{\rho}}{2 \sqrt{2} \, Q^2} \, \frac{\delta^{ab}}{2 \, N_c} \int_0^1 \left\{ \frac{(2 \, x - 1) \, \varphi_1^T(x) + 2 \, x \, (1 - x) \, \varphi^{WW}_3(x) + \varphi_A^T(x)}{x \, (1 - x)} \right. \\ &\left. - \frac{2 \, \underline{k}^2 \left(\underline{k}^2 + 2 \, Q^2 \, x \, (1 - x)\right) \left((2 \, x - 1) \, \phi_1^T(x) + \phi_A^T(x)\right)}{x \, (1 - x) \left(\underline{k}^2 + Q^2 \, x \, (1 - x)\right)^2} \right\} \end{split}$$

which simplifies, using equation of motion:

$$\int dx_1 [2 x \bar{x} \varphi_3^{WW}(x) + (x - \bar{x}) \varphi_1^T(x) + \varphi_A^T(x)] = 0$$

$$\Phi_{n,f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) = \frac{e m_\rho f_\rho}{\sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \int_0^1 \frac{2 \underline{k}^2 (\underline{k}^2 + 2 Q^2 x (1 - x))}{x (1 - x) (\underline{k}^2 + Q^2 x (1 - x))^2} \left[(2 x - 1) \varphi_1^T(x) + \varphi_A^T(x) \right].$$

• flip transition:

$$\Phi_{n,f.}^{\gamma_T^* \to \rho_T}(\underline{k}^2) = -\frac{e \, m_\rho f_\rho}{\sqrt{2} \, Q^2} \, \frac{\delta^{ab}}{2 \, N_c} \int_0^1 \frac{2 \, \underline{k}^2 \, Q^2}{\left(\underline{k}^2 + Q^2 \, (1-x) \, x\right)^2} \left[(1-2 \, x_1) \, \varphi_1^T(x) + \varphi_A^T(x) \right] \, .$$

30 / 34

• The obtained results are gauge invariant:

 $\Phi^{\gamma^*_T \to \rho_T} \to 0 \quad \text{when} \quad \underline{k} \to 0$

- this is straightforward in the WW limit
- at the full twist 3 order:
 - the C_F part of the abelian 3-body contribution cancels the 2-body contribution after using the equation of motion
 - $\bullet\,$ the $N_c\,$ part of the abelian 3-body contribution cancels the 3-body non-abelian contribution
 - thus $\gamma_T^* \to \rho_T$ impact factor is gauge-invariant only provided the 3-body contributions have been taken into account

- Our results are free of end-point singularities, in both WW approximation and full twist-3 order calculation:
 - \bullet the flip contribution obviously does not have any end-point singularity because of the \underline{k}^2 which regulates them
 - the potential end-point singularity for the non-flip contribution is spurious since $\varphi_A^T(x_1), \varphi_1^T(x_1)$ vanishes at $x_1 = 0, 1$ as well as $B(x_1, x_2)$ and $D(x_1, x_2)$.

- We have performed a full up to twist 3 computation of the $\gamma^* \to \rho$ impact factor, in the $t = t_{min}$ limit.
- Our result respects gauge invariance. This is achieved only after including 2 and 3 body correlators.
- It is free of end-point singularities (this should be contrasted with standard collinear treatment, at moderate s, where the k_T -factorization is NOT applicable:

see Mankiewicz-Piller).

• In this talk we relied on the Light-Cone Collinear approach

(Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev), which is non-covariant, but very efficient for practical computations. • Comparison with a fully covariant approach by Ball+Braun et al The dictionnary between the two approaches within a full twist 3 treatment is established

$$B(y_1, y_2) = \frac{V(y_1, 1 - y_2, y_2 - y_1)}{y_2 - y_1} , \qquad D(y_1, y_2) = \frac{A(y_1, 1 - y_2, y_2 - y_1)}{y_2 - y_1}$$

$$\begin{split} \varphi_1(y) &= f_\rho m_\rho \phi_{\parallel}(y), \quad \varphi_3(y) = f_\rho m_\rho g^{(v)}(y), \\ \varphi_A(y) &= -\frac{1}{4} f_\rho m_\rho \frac{\partial g^{(a)}(y)}{\partial y} \end{split}$$

- We also performed calculations of the same impact factor within the covariant approach by Ball+Braun et al: calculations proceed in quite different way : eg. no ϕ^T -DAs but Wilson line effects are important !!
- Phenomenological applications will be done in the near future.