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Exact kinematics straightforward when 
considering small number of particles

In hadronic collisions at high energy: initial state 
is a hadron not a parton. Many partons can be 
produced which further hadronize. Efficient 

description in terms of  parton distributions and 
fragmentation functions.
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Motivation



∂

∂ log µ
f = K ⊗ f

Evolution of parton density from RG-type  closed equation

µ = Q, s

 Branching kernel has perturbative expansion

K = K(0)αs + K(1)α2
s + K(2)α3

s + . . .

QCD description of the parton 
density

Evolution of parton density

Multiple parton emissions

p or A

γ∗(q)parton 
density

+virtual processes



In this framework: kinematic 
approximations on the emissions of 

the partons

Branching kernel in higher orders does contain not only higher 
loop diagrams, but also topologically equivalent diagrams but 

with external partons in a different kinematic region.

Example: high energy limit s→∞
∆Y

∆Y

∆Y

∆Y

∆Y

∆Y

Clusters of particles in rapidity.
LL NLL

When                ,        is not  a  small parameter, hence expansion is 
slowly convergent. Perturbative methods not very efficient in 
correcting the kinematic approximations done on phase space.

s→∞ αs



Multiple gluon emissions in 
the light-cone formalism



Light-cone formalism
Infinite momentum frame: a limit of a 

Lorentz frame moving in the -z direction 
with  a (nearly) the speed of light.

Time ordered diagram

Energy denominators

τ

Difference of light - cone energies:

Dn = P− −
∑

i

k−i



A.Mueller
Quark-antiquark pair 

emitting
 longitudinally soft gluon. 

Dipole evolution.

Energy denominators in light cone 
perturbation theory
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of one gluon with momentum k2, see Fig. 2. If we were to keep the kinematics exact we would arrive at the analog of
the formula (13) for the case of one splitting, where say the gluon is emitted from the upper anti-quark line (Fig. 2)

Ψ(1)
exact(k1, z1, k2, z2) =

gtaū(k1)γ · ε2u(k1 + k2)

D̄1
Ψ(0)(k1, z1) . (54)

Here the exact energy denominator has the form

D̄1 = P− − [(P − k1 − k2)
− + k−

1 + k−
2 ] , (55)

and similarily for the second emission from the other quark line. Following the procedure presented in the previous
section one would obtain the recursion formulae which depend on the kinematics of the whole cascade. The simpli-
fication that arises in the high energy limit is due to the fact that the emission of the very soft daughter gluon gets
factorized from the rest of the wave function. In other words there is no recoil due to the emission of the gluon and
the rest of the whole cascade is frozen and is not affected by the splitting. This allows to factorize the emissions of
the gluons and resum their emissions in the form of the evolution equation. The softness of the emitted gluons is
manifested by the fact that the resulting evolution equation is Markovian in character, where the role of the time
variable is played by the rapidity or the ln 1/x of the emitted gluons. We shall show that the leading logarithmic
approach will be changed when the more exact kinematics is taken into account, but the resummation of the emission
can be still recast in the form of the evolution equation. To this aim let us recall the original assumptions made in
[2] that lead to the derivation of the dipole evolution equation in the leading logarithmic approximation.

The following assumptions are done in order to reproduce the leading logarithmic approximation, or the limit of
the high energy

• The emitted gluon is longitudinally soft: k+
2 " k+

1 ,
and one defines z1 = k+

1 /P+, z2 = k+
2 /P+ which are the fractions of the longitudinal momenta. Obviously

z2 " z1.

• The coupling of the gluon to the quark(antiquark ) is eikonal

gtaū(k1)γ · ε2u(k1 + k2) = 2gtak1 · ε2 ,

where ta is the color matrix in the fundamental representation and ε2 is the polarization vector of the emitted
gluon with momentum k2.

• Since the gluon is longitudinally soft k+
2 " k+

1 one can keep in graphs the leading term in the energy denominator
(see Fig. 2)

D̄1 =
1

P− − [(P − k1 − k2)− + k−
1 + k−

2 ]
#

1

k−
2

,

because k−
2 is the dominant term (k−

2 = k2
2/2k+

2 and k+
2 is very small, k+

2 " k+
1 , P+). Here, P is the initial

momentum, see Fig. 2.
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FIG. 2: Dipole wave function with one soft gluon. Dashed line indicates the energy denominator for the intermediate state.

If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)

k−2 ≡
k2

2

2k+
2
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If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)

High energy limit: strong ordering 
in longitudinal momenta
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If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)

Wave function 
with 1 gluon

Wave function 
without gluons

Dipole evolution at high energy

dipoles
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If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)



In transverse coordinate space
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At this stage there is only ordering in the longitudinal fractions z1 ! z2 which is extended to the weak inequality
z1 ≥ z2 in the subsequent calculation. Such approximation allows to treat the transverse momenta k2 and k1 as
completely uncorrelated. One can perform the Fourier transform of the above expression to obtain the formula for
the wave function with one soft gluon in the transverse space

Φ(1)(x01, x02; z1, z2) =

∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02 Ψ(1)(k1, k2; z1, z2) , (57)

which yields the explicit result

Φ(1)(x01, x02; z1, z2) = −
igta
π

(

x20

x2
20

−
x21

x2
21

)

· ε2 Ψ(0)(x01; z1) , (58)

where x2
ij ≡ x2

ij . We see the advantage of using the coordinate space representation because the soft gluons factorize
in (58) as demonstrated in [2]. The modulus squared of the one gluon wave function has then explicitly the form

|Φ(1)|2(x01; z1) =

∫ z1

z0

dz2

z2

∫

d2x02 x2
01

x2
02 x2

12

|Φ(0)|2(x01; z1) . (59)

In this form it is particularly transparent that in the high energy limit the transverse and longitudinal degrees of
freedom decouple. Therefore the transverse space coordinate representation is especially useful. The wave function
with one soft gluon is just the wave function without any soft gluons times the branching probability. The measure
(or branching probability) in this case

d2x02 x2
01

x2
02 x2

12

, (60)

is the dipole splitting kernel in the leading logarithmic approximation which appears in the dipole evolution equa-
tion for the dipole scattering amplitude and it was originally derived in [2]. The same kernel appears in nonlinear
version of the evolution equation with additional gluon rescatterings: the Balitsky-Kovchegov equation [6, 9]. It is
straightforward to check that this kernel is invariant with respect to the 2-dimensional conformal transformations. In
deriving the equation (56) one uses crucial assumption about the strong ordering in the energies

Ek2
! Ek1

. (61)

The light-cone energies are of course the ’−’ components of the four-momenta and they read

Ek1
=

k2
1

2k+
1

, Ek2
=

k2
2

2k+
2

. (62)

In the original approach [2] one uses the assumption of the softness of the gluon with respect to the parent dipole
and treats the transverse momenta as unordered which is equivalent to the Regge kinematics. This enables to make
the approximations as described above and factorize the soft gluon contribution. However, for the consistency of the
calculations we should keep the inequality (61) (with definitions (62) ) exact

k2
2

k+
2

>
k2

1

k+
1

, (63)

with k+
1 > k+

2 .
If there are more gluon emissions we will of course have

. . .
k2

4

k+
4

>
k2

3

k+
3

>
k2

2

k+
2

>
k2

1

k+
1

, (64)

and

· · · < k+
4 < k+

3 < k+
2 < k+

1 .

Also note that, in the onium, the harder gluon (that is the one with highest k+
i component) is emitted first, and the

softer gluon is emitted later. The light-cone kinematics with the assumptions about the ordering in the longitudinal

Soft gluons factorize in 
the transverse spae
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softer gluon is emitted later. The light-cone kinematics with the assumptions about the ordering in the longitudinal

Dipole kernel in the limit 
of high energy:

0

1 2

No restrictions on the transverse coordinates (or momenta).

Dipole evolution in rapidity:

∂N01

∂Y
= ᾱs

∫
d2x2

2π

x2
01

x2
02x

2
12

[N02 + N12 −N01]

Y rapidity

N01 dipole scattering amplitude (related to the gluon density)
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For the consistency of the 
calculation we should take:

For more emissions
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π

(

x20

x2
20

−
x21

x2
21

)

· ε2 Ψ(0)(x01; z1) , (58)

where x2
ij ≡ x2

ij . We see the advantage of using the coordinate space representation because the soft gluons factorize
in (58) as demonstrated in [2]. The modulus squared of the one gluon wave function has then explicitly the form

|Φ(1)|2(x01; z1) =

∫ z1

z0

dz2

z2

∫

d2x02 x2
01

x2
02 x2

12

|Φ(0)|2(x01; z1) . (59)

In this form it is particularly transparent that in the high energy limit the transverse and longitudinal degrees of
freedom decouple. Therefore the transverse space coordinate representation is especially useful. The wave function
with one soft gluon is just the wave function without any soft gluons times the branching probability. The measure
(or branching probability) in this case

d2x02 x2
01

x2
02 x2

12

, (60)

is the dipole splitting kernel in the leading logarithmic approximation which appears in the dipole evolution equa-
tion for the dipole scattering amplitude and it was originally derived in [2]. The same kernel appears in nonlinear
version of the evolution equation with additional gluon rescatterings: the Balitsky-Kovchegov equation [6, 9]. It is
straightforward to check that this kernel is invariant with respect to the 2-dimensional conformal transformations. In
deriving the equation (56) one uses crucial assumption about the strong ordering in the energies

Ek2
! Ek1

. (61)

The light-cone energies are of course the ’−’ components of the four-momenta and they read

Ek1
=

k2
1

2k+
1

, Ek2
=

k2
2

2k+
2

. (62)

In the original approach [2] one uses the assumption of the softness of the gluon with respect to the parent dipole
and treats the transverse momenta as unordered which is equivalent to the Regge kinematics. This enables to make
the approximations as described above and factorize the soft gluon contribution. However, for the consistency of the
calculations we should keep the inequality (61) (with definitions (62) ) exact

k2
2

k+
2

>
k2

1

k+
1

, (63)

with k+
1 > k+

2 .
If there are more gluon emissions we will of course have

. . .
k2

4

k+
4

>
k2

3

k+
3

>
k2

2

k+
2

>
k2

1

k+
1

, (64)

and

· · · < k+
4 < k+

3 < k+
2 < k+

1 .

Also note that, in the onium, the harder gluon (that is the one with highest k+
i component) is emitted first, and the

softer gluon is emitted later. The light-cone kinematics with the assumptions about the ordering in the longitudinal

Ordering in the fluctuation 
time: Dokshitzer, 

Marchesini, Salam
τ ∼ k+

k2
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of one gluon with momentum k2, see Fig. 2. If we were to keep the kinematics exact we would arrive at the analog of
the formula (13) for the case of one splitting, where say the gluon is emitted from the upper anti-quark line (Fig. 2)

Ψ(1)
exact(k1, z1, k2, z2) =

gtaū(k1)γ · ε2u(k1 + k2)

D̄1
Ψ(0)(k1, z1) . (54)

Here the exact energy denominator has the form

D̄1 = P− − [(P − k1 − k2)
− + k−

1 + k−
2 ] , (55)

and similarily for the second emission from the other quark line. Following the procedure presented in the previous
section one would obtain the recursion formulae which depend on the kinematics of the whole cascade. The simpli-
fication that arises in the high energy limit is due to the fact that the emission of the very soft daughter gluon gets
factorized from the rest of the wave function. In other words there is no recoil due to the emission of the gluon and
the rest of the whole cascade is frozen and is not affected by the splitting. This allows to factorize the emissions of
the gluons and resum their emissions in the form of the evolution equation. The softness of the emitted gluons is
manifested by the fact that the resulting evolution equation is Markovian in character, where the role of the time
variable is played by the rapidity or the ln 1/x of the emitted gluons. We shall show that the leading logarithmic
approach will be changed when the more exact kinematics is taken into account, but the resummation of the emission
can be still recast in the form of the evolution equation. To this aim let us recall the original assumptions made in
[2] that lead to the derivation of the dipole evolution equation in the leading logarithmic approximation.

The following assumptions are done in order to reproduce the leading logarithmic approximation, or the limit of
the high energy

• The emitted gluon is longitudinally soft: k+
2 " k+

1 ,
and one defines z1 = k+

1 /P+, z2 = k+
2 /P+ which are the fractions of the longitudinal momenta. Obviously

z2 " z1.

• The coupling of the gluon to the quark(antiquark ) is eikonal

gtaū(k1)γ · ε2u(k1 + k2) = 2gtak1 · ε2 ,

where ta is the color matrix in the fundamental representation and ε2 is the polarization vector of the emitted
gluon with momentum k2.

• Since the gluon is longitudinally soft k+
2 " k+

1 one can keep in graphs the leading term in the energy denominator
(see Fig. 2)

D̄1 =
1

P− − [(P − k1 − k2)− + k−
1 + k−

2 ]
#

1

k−
2

,

because k−
2 is the dominant term (k−

2 = k2
2/2k+

2 and k+
2 is very small, k+

2 " k+
1 , P+). Here, P is the initial

momentum, see Fig. 2.

p+

(p+ − k+
1 − k+

2 ,−k1 − k2)

(k+
2 , k2)

(k+
1 , k1)

p+

(p+ − k+
1 ,−k1)

(k+
2 , k2)

(k+
1 − k+

2 , k1 − k2)

FIG. 2: Dipole wave function with one soft gluon. Dashed line indicates the energy denominator for the intermediate state.

If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)

In the high energy limit:

Longitudinal and transverse momenta tied together.

k−2 ≡
k2

2

2k+
2
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of one gluon with momentum k2, see Fig. 2. If we were to keep the kinematics exact we would arrive at the analog of
the formula (13) for the case of one splitting, where say the gluon is emitted from the upper anti-quark line (Fig. 2)

Ψ(1)
exact(k1, z1, k2, z2) =

gtaū(k1)γ · ε2u(k1 + k2)

D̄1
Ψ(0)(k1, z1) . (54)

Here the exact energy denominator has the form

D̄1 = P− − [(P − k1 − k2)
− + k−

1 + k−
2 ] , (55)

and similarily for the second emission from the other quark line. Following the procedure presented in the previous
section one would obtain the recursion formulae which depend on the kinematics of the whole cascade. The simpli-
fication that arises in the high energy limit is due to the fact that the emission of the very soft daughter gluon gets
factorized from the rest of the wave function. In other words there is no recoil due to the emission of the gluon and
the rest of the whole cascade is frozen and is not affected by the splitting. This allows to factorize the emissions of
the gluons and resum their emissions in the form of the evolution equation. The softness of the emitted gluons is
manifested by the fact that the resulting evolution equation is Markovian in character, where the role of the time
variable is played by the rapidity or the ln 1/x of the emitted gluons. We shall show that the leading logarithmic
approach will be changed when the more exact kinematics is taken into account, but the resummation of the emission
can be still recast in the form of the evolution equation. To this aim let us recall the original assumptions made in
[2] that lead to the derivation of the dipole evolution equation in the leading logarithmic approximation.

The following assumptions are done in order to reproduce the leading logarithmic approximation, or the limit of
the high energy

• The emitted gluon is longitudinally soft: k+
2 " k+

1 ,
and one defines z1 = k+

1 /P+, z2 = k+
2 /P+ which are the fractions of the longitudinal momenta. Obviously

z2 " z1.

• The coupling of the gluon to the quark(antiquark ) is eikonal

gtaū(k1)γ · ε2u(k1 + k2) = 2gtak1 · ε2 ,

where ta is the color matrix in the fundamental representation and ε2 is the polarization vector of the emitted
gluon with momentum k2.

• Since the gluon is longitudinally soft k+
2 " k+

1 one can keep in graphs the leading term in the energy denominator
(see Fig. 2)

D̄1 =
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P− − [(P − k1 − k2)− + k−
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because k−
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2 " k+
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FIG. 2: Dipole wave function with one soft gluon. Dashed line indicates the energy denominator for the intermediate state.

If one puts together all these assumptions one arrives at the formula for the wave function with one emitted gluon

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2) . (56)
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momenta implies the ordering in the light cone time. As a results of the ordering (63) the region in the transverse
momenta k2

2 for the gluon emission is limited

Θ(k2
2 − k2

1) + Θ(k2
1 − k2

2)Θ(k2
2 − k2

1
k+
2

k+
1

) . (65)

This means that there is a constraint which restricts the transverse momenta of the daughter gluon (labelled 2). which

is the step function Θ(k2
2 − k2

1
k+
2

k+
1

). The constraint (63,65) means that the momenta of the emitted gluons (those with

k2) are cutoff in the infrared. Note that, the ordering (63) is exactly the same as the one discussed in [63–65], it is
ordering in the fluctuation time. One has to think about the cascade as developing from the hadron side and the
onium as a model of a hadron.

Given the discussion above, the wave function of the onium with one soft gluon should be modified to include the
constraint (63) and with this modification reads

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]Θ(z1 − z2)Θ

(

k2
2

z2
−

k2
1

z1

)

, (66)

where we used z1, z2 insted of k+
1 , k+

2 . At this point it is no longer so trivial to perform the Fourier transform into
the coordinate space since the transverse momenta are entagled now and the soft gluons do not factorize as before in
coordinate space. In particular, there will be a shift (or distortion) of the original dipole since we encounter integrals
of the type (if we choose to make the k1 integral first in the following example )

∫

d2k1

(2π)2
eik1·x01 Ψ(0)(k1, z1)Θ

(

k2
2

z2
−

k2
1

z1

)

. (67)

Therefore we see that the kinematical constraint emerges in the lightcone perturbation theory from the more exact
treatment of the energy denominators in the graphs.

B. Modified energy denominators in the dipole evolution

In the previous section we have seen how the kinematical constraint emerges from the more careful treatment of
the energy denominators. In this section we will demonstrate that one can include this effect into the dipole wave
function. In particular we will arrive at a modified dipole evolution equation. Let us take the more exact version of
the energy denominator which includes the energy of the parent emitter

1

Ek1 + Ek2
,

with energies Ek1, Ek2 defined as in Eq.(62). With this modification the formula (56) for the dipole wave function in
momentum space with one gluon becomes

Ψ(1)(k1, k2, z1, z2) = 2gta
ε2 · k2

k2
2 + k2

1
k+
2

k+
1

[Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)] . (68)

We still keep the vertex to be eikonal, the only modifications are in the energy denominator. Let us define the scale

Q
2 ≡ k2

1
k+
2

k+
1

= k2
1 z , z =

z2

z1
, (69)

and perform the two-dimensional Fourier transform of (68) to the coordinate space

Φ(1)(x01, x02; z1, z2) = 2gta

∫

d2k1

(2π)2
d2k2

(2π)2
eik

1
·x

01
+ik

2
·x

02 [Ψ(0)(k1, z1) − Ψ(0)(k1 + k2, z1)]
ε2 · k2

k2
2 + Q

2 . (70)

D1 !
1

k−1 + k−2

Keep the energy of the parent emitter

Approximate Fourier transform

Φ(1)(x02, x12; z) ∼ gta
(

Q̄01K1(Q̄01x02)
ε2 · x02

x02
− Q̄01K1(Q̄01x12)

ε2 · x12

x12

)
Φ(0)(x01; z)
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Let us take the first term in the above formula

2gta

∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02Ψ(0)(k1, z1)

ε2 · k2

k2
2 + Q

2 =

= 2gta

∫

d2k1

(2π)2
eik1·x01Ψ(0)(k1, z1)

i

2π
QK1(Qx02)

ε2 · x02

x02

= 2gta

∫

d2r Φ(0)(r, z)

∫

d2k1

(2π)2
eik

1
·(x

01
−r) i

2π
QK1(Qx02)

ε2 · x02

x02
. (71)

To get the last line, we have used the inverse Fourier transform to represent the wave function in the coordinate
space Φ(0)(r, z). Since the expression with the modified Bessel function QK1(Qx02) depends on k1 we do not get a
delta function δ(2)(r− x01) after the integration over k1. This means that the parent dipole recoils or changes its size
because of the emission of the daughter dipole. If we insist that the recoil is small we can still make an improvement
over the original LLx dipole formula by making the following approximations

Q01 "
1

x01

√

k+
2

k+
1

=
1

x01

√
z , (72)

and after performing the k1 integration which in this approximation gives delta function we finally get

2gta Φ(0)(x01, z)
i

2π
Q01K1(Q01 x02)

ε2 · x02

x02
. (73)

This is an amplitude for the one gluon emission in the coordinate space improved by taking into account the next,
subleading term in the energy denominator. Note, that it is a simplified and special version of (28). The difference
is that we do not keep all the terms in the energy denominators but only the ones which are related to the ’parent’
emitter and the last gluon in the emission. This allows to factorize the splitting from the rest of the cascade. Therefore
in this case each emission will be governed by the same kernel (73) whereas in the exact case the splitting is governed
by more complicated expression with the Bessel function whose order changes with the number of the gluons in the
wave function.

The last expression (73) obviously reduces to the original LLx dipole formula, compare (58), by expanding the
Bessel function K1 for the small values of the argument

Q01K1(Q01 x02) =

√
z

x01
K1(

x02

x01

√
z) "

1

x02
, for

x02

x01

√
z → 0 . (74)

The expression (73) becomes in this limit

2gta Φ(0)(x01, z)
i

2π

ε2 · x02

x2
02

, (75)

which is the original LLx formula [2] as expected. Therefore, (73) is an improvement over the original formula (75).
The recoil (or more precisely the change of the size of the parent dipole) is neglected however in this approximation.
Note that, there is a similarity of (73) with the form of the dipole formula for the F2 structure function

FT,L(x, Q2) =
Q2

4π2αem

∫

d2r

∫ 1

0
dz |Ψγ∗,qq̄

T,L (r, z, Q2)|2 σ̂(r, x) , (76)

where Ψγ∗,qq̄
T,L is the wave function for the splitting of the virtual photon into a qq̄ pair (dipole), and σ̂ is the imaginary

part of the forward scattering amplitude of the qq̄ dipole on the proton, called the dipole cross section, which describes
the interaction of the dipole with the proton. In addition, r is the transverse separation of the quarks in the qq̄ pair,
and z is the light-cone momentum fraction of the photon carried by the quark (or antiquark). As usual, −Q2 is the
photon virtuality and x is the Bjorken variable defined as x = Q2/s with s the total energy of the γ∗p system. The
wave function of the virtual photon is given by the following equations:

|Ψγ∗,qq̄
T |2 =

3 αem

2π2

∑

f

e2
f

{

[z2 + (1 − z)2]Q
2
fK2

1 (Qfr) + m2
f K2

0(Qfr)
}

, (77)

|Ψγ∗,qq̄
L |2 =

3 αem

2π2

∑

f

e2
f

{

4Q2z2(1 − z)2K2
0 (Qfr)

}

,

Modified Bessel functions of the 
second kind.

z longitudinal 
momentum fraction

ln 1/z ∼ y rapidity
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where the sum is performed over quarks with flavour f , charge ef , and

Q
2
f = z(1− z)Q2 + m2

f . (78)

We see that whenever z or 1 − z are small the wavefunction can be approximated by

Q̄2
fK2

1 (Q̄fr) "
1

r2
,

in a close analogy with the dipole kernel in the LLx approximation, compare the square of (75). We see that (73)
contains the kinematical constraint in the transverse space which is realized by the exponential tail of the Bessel
function for large values of its argument

Q01K1(Q01x02) =

√
z

x01
K1(

x02

x01

√
z) "

√

π
√

z

2x02x01
exp(−

x02

x01

√
z) ,

x02

x01

√
z → ∞ , (79)

We have deliberately chosen the notation of Q variable in (69) to make contact with the analogous variable in the

wave function of the photon Q
2 ≡ Q2z(1 − z) (77,78). Of course we still have here small z so that (1− z) " 1.

The improved dipole kernel coming from squaring (73) plus the term from the second graph, reads

d2x2

(

Q01K1(Q01x02)
ε2 · x02

x02
− Q01K1(Q01x12)

ε2 · x12

x12

)2

=

= d2x2 Q
2
01 [K2

1 (Q01 x02) + K2
1 (Q01 x12) − 2K1(Q01 x02)K1(Q01 x12)

x02 · x12

x02x12
] , (80)

with

Q01 =
1

x01

√
z , (81)

compare Eq. (72). We will refer to it as the quasilocal case because in this approximation we are keeping only terms in
the energy denominators which refer to the daugther and the parent dipole, without any other dipoles in the cascade.
It is straightforward to verify that the (80) simplifies to (60) when z → 0. The kernel (80) is very similar in form
to the one with the massive gluon, which also can be expressed in terms of the Bessel functions. Here, however the
argument of the Bessel functions depends on the Q01, and consequently on the longitudinal momentum z, see (81).
The transverse and longitudinal momenta are not separated any more, even though we can still use a single, closed
integral equation for the evolution of the dipole amplitude in the rapidity. In the LLx approximation the evolution
depended only on the previous step in rapidity, with the branching that was independent of the rapidity or x. The
modified kernel (80) contains the branchings which depend explicitly on the longitudinal variable, and therefore on
all the steps in the evolution in rapidity. This is a qualitative difference as this means that there is now a ’memory’
in the evolution of the system of dipoles. The probability of the emission of next dipoles depends on the evolution
variable (’time’) z.

C. Emission with the change of the parent dipole size

If we want to be more precise we can go back to the last line of (71) with Q = k1

√
z and perform the integral

2gta

∫

d2r Φ(0)(r, z)

∫

d2k1

(2π)2
eik1·(x01−r) i

2π
QK1(Qx02)

ε2 · x02

x02
, (82)

to get

2gta

∫

d2r Φ(0)(r, z)

∫

k1dk1

2π
J0(k1|x01 − r|)

i

2π
k1
√

zK1(k1
√

zx02)
ε2 · x02

x02
=

= 2gta

∫

d2r Φ(0)(r, z)
ε2 · x02

x02

i

2π

√
z

∫

k2
1dk1

2π
J0(k1|x01 − r|)K1(k1

√
zx02) =

= 2gta

∫

d2r Φ(0)(r, z)
ε2 · x02

x2
02

i

(2π)2
2(
√

zx02)2

[(x01 − r)2 + (
√

zx02)2]2
. (83)
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At this stage there is only ordering in the longitudinal fractions z1 ! z2 which is extended to the weak inequality
z1 ≥ z2 in the subsequent calculation. Such approximation allows to treat the transverse momenta k2 and k1 as
completely uncorrelated. One can perform the Fourier transform of the above expression to obtain the formula for
the wave function with one soft gluon in the transverse space

Φ(1)(x01, x02; z1, z2) =

∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02 Ψ(1)(k1, k2; z1, z2) , (57)

which yields the explicit result

Φ(1)(x01, x02; z1, z2) = −
igta
π

(

x20

x2
20

−
x21

x2
21

)

· ε2 Ψ(0)(x01; z1) , (58)

where x2
ij ≡ x2

ij . We see the advantage of using the coordinate space representation because the soft gluons factorize
in (58) as demonstrated in [2]. The modulus squared of the one gluon wave function has then explicitly the form

|Φ(1)|2(x01; z1) =

∫ z1

z0

dz2

z2

∫

d2x02 x2
01

x2
02 x2

12

|Φ(0)|2(x01; z1) . (59)

In this form it is particularly transparent that in the high energy limit the transverse and longitudinal degrees of
freedom decouple. Therefore the transverse space coordinate representation is especially useful. The wave function
with one soft gluon is just the wave function without any soft gluons times the branching probability. The measure
(or branching probability) in this case

d2x02 x2
01

x2
02 x2

12

, (60)

is the dipole splitting kernel in the leading logarithmic approximation which appears in the dipole evolution equa-
tion for the dipole scattering amplitude and it was originally derived in [2]. The same kernel appears in nonlinear
version of the evolution equation with additional gluon rescatterings: the Balitsky-Kovchegov equation [6, 9]. It is
straightforward to check that this kernel is invariant with respect to the 2-dimensional conformal transformations. In
deriving the equation (56) one uses crucial assumption about the strong ordering in the energies

Ek2
! Ek1

. (61)

The light-cone energies are of course the ’−’ components of the four-momenta and they read

Ek1
=

k2
1

2k+
1

, Ek2
=

k2
2

2k+
2

. (62)

In the original approach [2] one uses the assumption of the softness of the gluon with respect to the parent dipole
and treats the transverse momenta as unordered which is equivalent to the Regge kinematics. This enables to make
the approximations as described above and factorize the soft gluon contribution. However, for the consistency of the
calculations we should keep the inequality (61) (with definitions (62) ) exact

k2
2

k+
2

>
k2

1

k+
1

, (63)

with k+
1 > k+

2 .
If there are more gluon emissions we will of course have

. . .
k2

4

k+
4

>
k2

3

k+
3

>
k2

2

k+
2

>
k2

1

k+
1

, (64)

and

· · · < k+
4 < k+

3 < k+
2 < k+

1 .

Also note that, in the onium, the harder gluon (that is the one with highest k+
i component) is emitted first, and the

softer gluon is emitted later. The light-cone kinematics with the assumptions about the ordering in the longitudinal
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Let us take the first term in the above formula

2gta

∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02Ψ(0)(k1, z1)

ε2 · k2

k2
2 + Q

2 =

= 2gta

∫

d2k1

(2π)2
eik1·x01Ψ(0)(k1, z1)

i

2π
QK1(Qx02)

ε2 · x02

x02

= 2gta

∫

d2r Φ(0)(r, z)

∫

d2k1

(2π)2
eik

1
·(x

01
−r) i

2π
QK1(Qx02)

ε2 · x02

x02
. (71)

To get the last line, we have used the inverse Fourier transform to represent the wave function in the coordinate
space Φ(0)(r, z). Since the expression with the modified Bessel function QK1(Qx02) depends on k1 we do not get a
delta function δ(2)(r− x01) after the integration over k1. This means that the parent dipole recoils or changes its size
because of the emission of the daughter dipole. If we insist that the recoil is small we can still make an improvement
over the original LLx dipole formula by making the following approximations

Q01 "
1

x01

√

k+
2

k+
1

=
1

x01

√
z , (72)

and after performing the k1 integration which in this approximation gives delta function we finally get

2gta Φ(0)(x01, z)
i

2π
Q01K1(Q01 x02)

ε2 · x02

x02
. (73)

This is an amplitude for the one gluon emission in the coordinate space improved by taking into account the next,
subleading term in the energy denominator. Note, that it is a simplified and special version of (28). The difference
is that we do not keep all the terms in the energy denominators but only the ones which are related to the ’parent’
emitter and the last gluon in the emission. This allows to factorize the splitting from the rest of the cascade. Therefore
in this case each emission will be governed by the same kernel (73) whereas in the exact case the splitting is governed
by more complicated expression with the Bessel function whose order changes with the number of the gluons in the
wave function.

The last expression (73) obviously reduces to the original LLx dipole formula, compare (58), by expanding the
Bessel function K1 for the small values of the argument

Q01K1(Q01 x02) =

√
z

x01
K1(

x02

x01

√
z) "

1

x02
, for

x02

x01

√
z → 0 . (74)

The expression (73) becomes in this limit

2gta Φ(0)(x01, z)
i

2π

ε2 · x02

x2
02

, (75)

which is the original LLx formula [2] as expected. Therefore, (73) is an improvement over the original formula (75).
The recoil (or more precisely the change of the size of the parent dipole) is neglected however in this approximation.
Note that, there is a similarity of (73) with the form of the dipole formula for the F2 structure function

FT,L(x, Q2) =
Q2

4π2αem

∫

d2r

∫ 1

0
dz |Ψγ∗,qq̄

T,L (r, z, Q2)|2 σ̂(r, x) , (76)

where Ψγ∗,qq̄
T,L is the wave function for the splitting of the virtual photon into a qq̄ pair (dipole), and σ̂ is the imaginary

part of the forward scattering amplitude of the qq̄ dipole on the proton, called the dipole cross section, which describes
the interaction of the dipole with the proton. In addition, r is the transverse separation of the quarks in the qq̄ pair,
and z is the light-cone momentum fraction of the photon carried by the quark (or antiquark). As usual, −Q2 is the
photon virtuality and x is the Bjorken variable defined as x = Q2/s with s the total energy of the γ∗p system. The
wave function of the virtual photon is given by the following equations:

|Ψγ∗,qq̄
T |2 =

3 αem

2π2

∑

f

e2
f

{

[z2 + (1 − z)2]Q
2
fK2

1 (Qfr) + m2
f K2

0(Qfr)
}

, (77)

|Ψγ∗,qq̄
L |2 =

3 αem

2π2

∑

f

e2
f

{

4Q2z2(1 − z)2K2
0 (Qfr)

}

,
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Let us take the first term in the above formula

2gta

∫

d2k1

(2π)2
d2k2

(2π)2
eik1·x01+ik2·x02Ψ(0)(k1, z1)
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Dipole kernel with Bessel-Macdonald functions:

 Energy dependent cutoff in impact parameter: 
exponential tails, range depends on the energy.

 Violation of conformal invariance in 2-dimensions.

 Recovering original dipole kernel in the high energy 
limit.
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FIG. 3: Dipole configurations in two collinear limits. Left plot: x02 ! x01 & x12 ∼ x01; right plot: x02 # x01 & x12 ∼ x02 .

Let us compare the behavior of (80) and (84) in different collinear limits. By collinear limits we mean here the
regime when the parent and daughter dipole sizes are strongly ordered. In the first case one of the daughter dipoles
is much smaller than the parent dipole and we have

x02 ! x01 & x12 ∼ x01 ,

or

x12 ! x01 & x02 ∼ x01 .

This situation is depicted on left plot in Fig. 3. In these configurations the NLLx kernel (84) vanishes since

log
x12

x01
# log

x01

x01
= 0 or log

x02

x01
# log

x01

x01
= 0 .

In the second collinear case both daughter dipoles are larger than the parent dipole, the configuration is shown in
right plot in Fig. 3.

x02 $ x01 & x12 ∼ x02 .

In this case the non-conformal part of the next-to-leading kernel reduces to

K
NLO
non−conf. ⊗ NY → −

ᾱ2
s

π

∫

d2x2 x2
01

x4
02

log2(
x02

x01
) [. . . ] ,

where [. . . ] means the same expression in the square brackets as in (84). The double-log NLLx contribution is large
and negative in the regime where the produced dipoles x02 and x12 are very large compared to the dipole x01. This is
exactly the same regime where the modified kernel (80) is cutting off the contributions of the large (02), (12) dipoles
due to the exponential tails in the asymptotic expansion of K1 functions. We also see here why the modified kernel
is a better approximation, as the exponential tails cut off smoothly the part of the phase space, whereas at the
next-to-leading approximation we have a subtraction of a possibly large negative term.

E. Extraction of double logaritmic terms in a simplified approach

Building on our experience with the kinematic constraint in the momentum space, we conjecture that the double
logarithmic contribution is pretty robust and independent of the details. What was essential is the entanglement of
transverse and longitudinal momenta, that cuts off the large momentum tail in the z-dependent manner (as discussed
in Sec. 1), and particular realizations of the cut-off do no affect the double logaritmic terms.

So, let us try to take a drastically simplified approach. Namely, let us introduce a modified dipole emission kernel

x2
01

x2
02x

2
12

θ(x2
01 − zx2

02) θ(x2
01 − zx2

12). (85)

This kernel introduces the cut-off on large dipole sizes consistent with the effective cut-offs given by the more accurate
expression, but obviously, it is easier to study. There is a rather simple assumption behind this kernel: if the child
dipole size is small enough, the deviations from the LL kernel are negligible, and if it is too large, the kinematical
effects introduce a distortion, which should lead to a suppression of the kernel. This is seen, in particular, in the
Bessel improved kernel.

The integral equation with this kernel reads,

N01(x) = N (0)
01 +

∫ 1

x

dz

z

∫

d2x2
x2

01

x2
02x

2
12

θ(zx2
01 − xx2

02) θ(zx2
01 − xx2

12) [N02(z) + N21(z) − N01(z)] . (86)
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dipole size is small enough, the deviations from the LL kernel are negligible, and if it is too large, the kinematical
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Cutoff on configuration of large dipoles

exponential 
behavior

Recovering part of  NLL contribution 
from explicit calculation by Balitsky 
and Chirilli (non-conformal part).
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where we have used

k−
i =

k2
i

2ziP+
,

and we introduced the auxilliary notation for the (rescaled) denominator Dn.

P

DnDn−1

3

2
1

FIG. 1: The multi-gluon wave function. The vertical dashed lines symbolize different intermediate states where we need to
evaluate the energy denominators. It is understood that the wave function scatters finally on some target.

B. Triple gluon vertex

In order to calculate the multi-gluon wave function in the exact kinematics we need to write down the exact
formula for the gluon splitting. We work in the light-cone gauge, η · A = 0, with vector η = (0, 1, 0) in the light-cone
coordinates. This choice of gauge defines the polarisation four-vectors of the gluon with four-momentum k

ε(±) = ε(±)
⊥ +

ε(±) · k
η · k

η , (3)

where ε(±)
⊥ = (0, 0, ε(±)), and the transverse vector is defined by ε(±) = ∓ 1√

2
(1,±i). We project the triple gluon vertex

on the (±) polarisation states of the outgoing gluons

Ṽ a1a2a3

λ1λ2λ3
(k1, k2, k3) = ε(λ1) µ1ε(λ2) µ2ε(λ3) µ3V a1a2a3

µ1µ2µ3
(k1, k2, k3) , (4)

where a1, a2, a3 are of course color indices. Vertex Ṽ a1a2a3

λ1λ2λ3
(k1, k2, k3) vanishes if all helicities are the same, λ1 = λ2 =

λ3. When one helicity, say λ1 = −1, is different than the others λ2 = λ3 = +1, the vertex takes the following form in
the light-cone variables,

Ṽ a1a2a3

−++ (k1, k2, k3) = g fa1a2a3 z1 ε(−) ·
(

k2

z2
−

k3

z3

)

. (5)

Here g is the strong coupling constant and fa1a2a3 is the structure constant for the SU(3) color group. Let us consider
the simplest situation, when the incoming gluon has the helicity + and it splits into two outgoing gluons with helicity
+. The splitting amplitude is then described by (5), with z1 being the fraction of the + component of the momentum
of the incoming gluon. This situation is depicted in Fig. 1. Note that all dependence of the vertex on the transverse
momenta of the daughter gluons is completely absorbed into a variable

v23 ≡
(

k2

z2
−

k3

z3

)

. (6)

Gluon in the initial state. Dynamics 
similar to the dipole model.

✴ Previously: modified kernel, only some corrections  in the energy 
denominators. Still eikonal vertices.
✴ Keep  kinematics exact through the complete evolution: both vertices 
and energy denominators kept exact.

5

Interestingly enough, the same variable is present when we consider the change of the energy denominator due to the
splitting. In a general situation, when the gluon with momentum k1 belongs to a virtual gluon cascade, the energy
denominator before the splitting of gluon 1 can be written as

Dn = Dn/1 +
k2

1

z1
, (7)

where Dn/1 = Q2 +
∑

i>1
k2

i

zi
does not contain the energy of gluon 1. Note that, we are using here the definition (2)

for the energy denominator, which is different by the sign and with the P+ dependence factored out. After the gluon
splits into two gluons with momenta k2 and k3 we have

Dn+1 = Dn/1 +
k2

2

z2
+

k2
3

z3
. (8)

This splitting of gluon 1 into 2 and 3 is depicted in Fig. 1. In the light cone perturbation theory the transverse and
the + components of the longitudinal momenta are conserved in the vertices therefore we have that that k1 = k2 + k3
and z1 = z2 + z3. Using this fact one can express the change of the energy denominator as,

Dn+1 − Dn =
z2z3

z2 + z3

(

k2

z2
−

k3

z3

)2

. (9)

It is convenient to introduce a variable that depends on the longitudinal degrees of freedom

ξ23 ≡
z2z3

z2 + z3
. (10)

We therefore see that the change in the denominator (9) due to the splitting is expressed through the variable v23 as
well

Dn+1 − Dn = ξ23 v2
23 . (11)

In the light-cone formulation of the QCD, the intermediate line that carries longitudinal momentum fraction zi is
multiplied by 1/

√
zi. It is therefore convenient to follow the convention by [60] and absorb such factors into all the

gluon lines incoming and outgoing from the triple gluon vertex. Thus, we shall use

V̄ a1a2a3

λ1λ2λ3
(k1, k2, k3) =

1
√

z1z2z3
Ṽ a1a2a3

λ1λ2λ3
(k1, k2, k3) = gfa1a2a3

ε(−)v23√
ξ23

. (12)

Now, we can collect the vertex and the energy denominator together to get the effect of the gluon splitting on
the virtual multi-gluon state wave function. We shall introduce the following notation. Let Ψn(k01, k2, . . . , kn) (with
k01 = k0 + k1) be the n-gluon wave function in momentum space before the splitting of gluon with momentum k01,
and Ψn+1(k0, k1, k2, . . . , kn) the wave function after splitting of this gluon. Then the splitting of the gluon with
momentum k01 acts as follows,

Ψn+1(k0, k1, . . . , kn) =
g√
ξ01

ε(−)v01

Dn + ξ01 v2
01

Ψn(k01, k2, . . . , kn), (13)

where the color degrees of freedom are suppressed. In the large Nc limit the color degrees of freedom impose the
ordering and will give phases. The full representation of the color effects in the large Nc limit will be possible after
reformulating the gluon cascade in terms of the color dipoles. The formula (13) is the recurrence prescription for
obtaining the wave function with n + 1 virtual gluons from the wave function with n gluons. Of course to obtain
the full recurrence formula one needs to sum over the different possibilities of the splittings which will give us the
following result

Ψn+1(k0, k1, . . . , kn) =
g

Dn+1

n−1
∑

i=1

ε(−)vi i−1
√

ξi−1 i

Ψn(k0, . . . , ki−1 i, . . . , kn), (14)

where Dn+1 is the denominator for the last intermediate state with n + 1 gluons. The form of the splitting given by
(13) and (14) looks highly symmetric, and all dependence on momenta of daughter gluons i and i − 1 is embedded
into two variables: ξi−1 i and vi−1 i. In this calculation we have kept the exact kinematics and therefore the energy
denominator includes the full dependence on the momenta in the whole cascade. This is understandable, as in the
case of the exact kinematics the new wave function has to carry the full information about the old wave function. We
will come back to this point later in Sec. III when we discuss the high energy limit.

ξ01 =
z0z1

z0 + z1
v01 =

k0

z0
− k1

z1

Recurrence relations between wave functions

Helicity conserved through the 
whole cascade.
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= g
v∗12√
ξ12

Ψn(12, 3, . . . , n + 1) + g
v∗23√
ξ23

Ψn(1, 23, . . . , n + 1) + . . . + g
v∗n n+1

√

ξn n+1

Ψn(1, 2, . . . , n n + 1) , (32)

with Dn+1 = k2
1/z1 + k2

2/z2 + · · · + k2
n+1/zn+1. We have introduced the notation Ψn(1, . . . , i − 1 i, . . . , n + 1) where

i − 1 i means that it is the gluon with the momentum ki−1 i = ki−1 + ki. After the first splitting one gets

Ψ2(1, 2) = −g∆(2) 1√
ξ12

v∗12
ξ12|v12|2

= −g∆(2) 1√
ξ12

1

ξ12v12
, (33)

where we have taken that P− = 0. According to (32), the next splitting leads from Ψ2(1, 2) to Ψ3(1, 2, 3):

−D3Ψ3(1, 2, 3) = −g∆(3)

[

v∗12√
ξ12

Ψ2(12, 3) +
v∗23√
ξ23

Ψ2(1, 23)

]

= g2∆(3)

[

v∗12
√

ξ12ξ(12)3

1

ξ(12)3 v(12)3
+

v∗23
√

ξ23ξ1(23)

1

ξ1(23) v1(23)

]

. (34)

This expression may be, after some simple algebra, simplified using ξ12ξ(12)3 = ξ23ξ1(23) = z1z2z3

z1+z2+z3
= z1z2z3. One

obtains,

Ψ3(1, 2, 3) = g2∆(3) 1
√

z1z2z3

1

ξ(12)3ξ1(23)

1

v(12)3 v1(23)
. (35)

Note that, the energy denominator D3 disappeared from the equation as it has canceled with the numerator when
finding the common denominator for expression (34). The same procedure can be iterated further. We shall give
below the explicit form of the wave function obtained for 4 gluons and then present a generalization to an arbitrary
n. Thus, for n = 4 we found:

Ψ4(1, 2, 3, 4) = −g3 ∆(4) 1
√

z1z2z3z4

1

ξ(123)4 ξ(12)(34) ξ1(234)

1

v(123)4 v(12)(34) v1(234)
, (36)

and for a general integer n > 2 one expects,

Ψn(1, 2, . . . , n) = (−1)n−1gn−1 ∆(n) 1
√

z1z2 . . . zn

1

ξ(12...n−1)n ξ(12...n−2)(n−1 n) . . . ξ1(2...n)

×
1

v(12...n−1)n v(12...n−2)(n−1 n) . . . v1(2...n)
. (37)

This formula was explicitly verified for n = 2, 3, 4, 5, 6. The proof for arbitrary n can be done by mathematical
induction and proceeds as follows. We assume that the wave function Ψn satisfies the above conjecture (37). Using
(32) the wave function Ψn+1 has then the form

− Dn+1 Ψn+1(1, 2, . . . , n + 1) = g
n

∑

i=1

v∗(i,i+1)
√

ξ(i,i+1)
Ψn(1, 2, . . . , (i i + 1), . . . , n + 1) =

(−1)n−1gn
n

∑

i=1

v∗(i,i+1)
√

ξ(i,i+1)

1
√

z1z2 . . . (zi + zi+1) . . . zn

1

(ξ(12...n)n+1 ξ(12...n−1)(n n+1) . . . ξ1(2...n+1))′
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1

(v(12...n)n+1 v(12...n−1)(n n+1) . . . v1(2...n+1))′
. (38)

We have inserted the symbol ′ to denote the fact that the indices i i + 1 have to be taken together, or in
other words in each term of the sum in (38) for a given i the denominator does not have the term of the form
ξ(1...i)(i+1...n+1)v(1...i)(i+1...n+1). The expression under the square root is

ξ(i,i+1) z1z2 . . . (zi + zi+1) . . . zn =
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zi + zi+1
z1z2 . . . (zi + zi+1) . . . zn = z1z2 . . . zn+1 , (39)
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= g
v∗12√
ξ12

Ψn(12, 3, . . . , n + 1) + g
v∗23√
ξ23

Ψn(1, 23, . . . , n + 1) + . . . + g
v∗n n+1

√

ξn n+1

Ψn(1, 2, . . . , n n + 1) , (32)

with Dn+1 = k2
1/z1 + k2

2/z2 + · · · + k2
n+1/zn+1. We have introduced the notation Ψn(1, . . . , i − 1 i, . . . , n + 1) where

i − 1 i means that it is the gluon with the momentum ki−1 i = ki−1 + ki. After the first splitting one gets

Ψ2(1, 2) = −g∆(2) 1√
ξ12

v∗12
ξ12|v12|2

= −g∆(2) 1√
ξ12

1

ξ12v12
, (33)

where we have taken that P− = 0. According to (32), the next splitting leads from Ψ2(1, 2) to Ψ3(1, 2, 3):

−D3Ψ3(1, 2, 3) = −g∆(3)

[

v∗12√
ξ12

Ψ2(12, 3) +
v∗23√
ξ23

Ψ2(1, 23)

]

= g2∆(3)

[

v∗12
√

ξ12ξ(12)3

1

ξ(12)3 v(12)3
+

v∗23
√

ξ23ξ1(23)

1

ξ1(23) v1(23)

]

. (34)
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−DnΨn(1, 2, . . . , n) = g
n−1∑

k=1

v∗(k,k+1)√
ξ(k,k+1)

Ψn−1(1, 2, . . . , (k k + 1), . . . , n)

...
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where

A ≡ ξ01r
2
01 + z01(r

′
1 − R01)

2 + z2(r
′
2 − r2)

2 + . . . + zn(r′n − rn)2 . (27)

The integral kernel
(

− 1
π

∂
∂A

)n+1
K0

(

√

Q2A
)

can be rewritten into a more elegant form using the relations between

the modified Bessel functions and their derivatives, see for example [62]
(

d

x dx

)m

[x−nKn(x)] = (−1)mx−n−m Kn+m(x) ,

which gives

(

−
1

π

∂

∂A

)n+1

K0

(

√

Q2A
)

=
1

(2π)n+1

(

Q2

A

)

n+1
2

Kn+1(
√

Q2A) .

Using the above relations we can recast the recurrence relation (26) into

Φn+1(0, 1, . . . , n) = i
ε(−) · r01√

ξ01
z0z1z2 . . . zn

∫

d2r′1 . . . d2r′n
(2π)n+1

(

Q2

A

)

n+1
2

Kn+1(
√

Q2A) Φn(1′, 2′, . . . , n′) , (28)

with A defined above (27). The formula (26) is the prescription for the off-shell tree level wave function with exact
kinematics. Since it depends on the coordinates of all n gluons through the variable A defined above, it is quite
complicated. Also, it should be kept in mind that this is just formula for one particular splitting, one needs to sum
over all possible splittings like in (14). We will show nevertheless that in the case where the incoming particle is on-shell
there are significant simplifications, which allow to resum the multiple gluon splittings. The crucial difference with
respect to the leading logarithmic approximation with the Regge kinematics is the appearance of the modified Bessel
functions Kn+1 which contain the information about the gluon splitting. In the original approach the splitting of the
gluon leads to the expression which is just a power in the transverse coordinates. This translates into the powerlike
behavior of the splitting kernel in the dipole equation. Here, because the kinematics is kept exact the functional
dependence is governed by the Bessel functions, which for large values of their arguments have exponential behavior
asymptotically. This will result in a qualitative difference when investigating the impact parameter dependence of the
scattering amplitude. We will come back to this problem and discuss it in more detail at the end of Sec. III.

E. Resumming the multi-gluon wave function in the case of the on-shell incoming gluon

We consider here the multi-gluon wave function that originates from subsequent splittings of an on-shell incoming
gluon with helicity +. One can also alternatively think about it as the incoming particle with a large momentum

P+ such that P− = − Q2

2P+ is very small, at least as compared with the particles in the wave function. This will
result in energy denominators which do not contain the initial P−. We will assume that all gluons have + helicities
which should be a situation in the high energy limit, where the helicity flips are suppressed. We shall use the complex
representation of the transverse vectors: vij = ε(+) · vij , v∗ij = ε(−) · vij , and a useful notation,

v(i1i2...ip)(j1j2...jq) =
ki1 + ki2 + . . . + kip

zi1 + zi2 + . . . + zip

−
kj1 + kj2 + . . . + kjq

zj1 + zj2 + . . . + zjq

, (29)

ξ(i1i2...ip)(j1j2...jq) =
(zi1 + zi2 + . . . + zip

)(zj1 + zj2 + . . . + zjq
)

zi1 + zi2 + . . . + zip
+ zj1 + zj2 + . . . + zjq

, (30)

with notation ki ≡ ε(−) · ki. Let us denote the global kinematic δ function by ∆(n) = δ(2) (
∑n

i=1 ki ) δ ( 1 −
∑n

i=1 zi ).
Thus, the incoming state has the wave function,

Ψ1(1) = ∆(1). (31)

In the following discussion we will consider color ordering in the amplitudes, therefore we will suppress color degrees
of freedom. In general, for a color-ordered amplitude, the gluon splitting acts on the wave function as derived in
Eq. (14) (for on-shell initial state though)

−Dn+1 Ψn+1(1, 2, . . . , n + 1) =

n→ n + 1

n− 1→ n
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close to the center of the target where the field is strong. In that case N01 ∼ 0 because of small dipole at large impact
parameter and N02 ∼ N12 ∼ 1 and x02 ∼ x12 ∼ b01. The r.h.s of the LLx BK equation (98) is then

∫

d2x2
x2

01

x2
02x

2
12

[N02 + N12 − N01 − N02N12] #
x2

01

b4
01

∫

R

d2x2 , (99)

where R is the integration region where approximately x02 ∼ b01. Therefore in the case of the LLx equation the
diffusion in the transverse space leads always to the power like tails in impact parameter even with the exponentially
falling initial conditions. This leads to the violation of the Froissart bound [68] even in the presence of the saturation
corrections, as was first pointed out in [69–71].

The situation changes when the modified kernel (80) is considered. Here a similar analysis leads to

∫ z0

z0−δz

dz

z

∫

d2x2 Q̄2
01[K

2
1 (Q̄01x02) + K2

1 (Q̄01x12) − 2K1(Q̄01x02)K1(Q̄01x12)
x02 · x12

x02x12
]×

× [N02 + N12 − N01 − N02N12]

#
∫ z0

z0−δz

dz

z

∫

d2x2 [θ(x01/
√

zC − x02)
x2

01

x2
02x

2
12

+

+ θ(x02 − x01/
√

zC)
π

2

√
zx01

x3
02

exp(−2
x02

x01

√
z)] [N02 + N12 − N01 − N02N12] , (100)

where C ∼ 1, and where we made approximations in the second term that x01 & x12 ∼ x02 ∼ b01 which gives the
dominant contribution. The first term is the short range contribution and the second one is the long range one. It is
evident that the behavior of the scattering amplitude for small dipoles x01 and at large values of the impact parameter
b01 is governed by

N(x01, b01) ∼ exp(−2
b01

x01

√
z) . (101)

Therefore there is an exponential but with the effective mass which becomes smaller as
√

z/x01 decreases. One can
actually see two limits in this behavior. We can take b01, x01 fixed and so by decreasing z, or increasing the energy,
the exponential tails become power like. One can also take b01 and z fixed, and change the dipole size x01. For small
dipole sizes x01 & b01

√
z the tails are exponential, but for larger ones they become again power like. It is interesting

to note that the largest effect of the modification is for the dipoles with small sizes, even though the cutoff inside
the integral equation is acting on the large dipole sizes. This is result of the fact that the relevant parameter is
x02/x01

√
z, i.e. is proportional to the ratio of the dipole sizes. The only way to eliminate the power-like tails is to

put in (essentially by hand) the fixed mass term, which limits the range of the interactions [72], for example

Q
2
01 → Q

2
01 + m2 .

In this way one will get an amplitude which has exponential tails with fixed radius and this will lead to a behavior
consistent with the Froissart bound [68] (modulo normalization).

IV. MHV SCATTERING AMPLITUDES FROM THE LIGHT-CONE WAVE FUNCTION

A. Parke-Taylor amplitudes

In the previous sections we have analyzed the (tree level) wave function with arbitrary number of gluons in the
light cone formulation. We also would like to evaluate the scattering amplitude of the n-gluon wave function on the
target. In an unrestricted kinematic regime this will give us a general form for the multigluon amplitude. The exact
tree level amplitudes are known to arbitrary number of the external gluons. These are Parke-Taylor amplitudes [56]
(see [61] for a comprehensive review) and can be recast in the following form

Mn =
∑

{1,...,n}

tr(ta1ta2 . . . tan)m(p1, ε1; p2, ε2; . . . ; pn, εn) , (102)

where a1, a2, . . . , an, p1, p2, . . . , pn and ε1, ε2, . . . , εn are the color indices, momenta and the helicities of the external
n gluons. Matrices ta are in the fundamental representation of the color SU(Nc) group. The sum in (102) is overColor part Kinematical 

part
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FIG. 4: The n-gluon production amplitude with (−,−, +, . . . , +) helicity configuration. All the gluons are taken to be outgoing.

the (n − 1)! non-cyclic permutations of the set {0, 1, . . . , n}. The kinematical parts of the amplitude denoted by
m(1, 2, . . . , n) ≡ m(p1, ε1; p2, ε2; . . . ; pn, εn) are color independent and gauge invariant. These objects have a number
of important properties

1. m(1, 2, . . . , n) are invariant under cyclic permutations of the set {0, 1, . . . , n}.

2. m(n, n − 1, . . . , 1) = (−1)n m(1, 2, . . . , n) (reversal symmetry).

3. m(1, 2, . . . , n) + m(2, 1, . . . , n) + m(2, 3, 1, . . . , n) + . . . + m(2, 3, . . . , n, 1) = 0 (dual Ward identity).

4. Incoherence to leading number of colors

∑

colors

|Mn|2 = Nn−2
c (N2

c − 1)
∑

{1,...,n}

{

|m(1, 2, . . . , n)|2 + O(N2
c )

}

.

It can be shown that the amplitudes where all the gluons have the same helicities, or only one is different from the
others are vanishing (we assume that all the gluons are outgoing)

m(±,±, . . . ,±) = m(∓,±,±, . . . ,±) = 0 .

The non-vanishing amplitude for the configuration (−,−, +, . . . ,+) depicted in Fig. 4 at the tree level is given by the
formula

m(1−, 2−, 3+, . . . , n+) = ign−2 〈12〉4

〈12〉〈23〉 . . . 〈n−2 n−1〉〈n−1 n〉〈n1〉
, (103)

where the spinor products are defined by Eqs. (16),(17).
In order to compare the amplitudes obtained within the light cone perturbation theory formalism with the MHV

amplitudes we need to consider the scattering process of the evolved wave function onto the target. We will simplify
the problem by analyzing the case where the wave function scatters on a single gluon which is separated from the
wave function by a large rapidity interval. This situation corresponds to taking the high energy limit. We will also
assume that the interaction with the target is mediated by an instantaneous part of the gluon propagator in the
light cone gauge. Obviously this is a quite restrictive approximation, but it does allow to simplify the computations
significantly. The exact case will be more complicated but it can be performed using the presented techniques. To
demonstrate the equivalence with the MHV amplitudes it is essential to include the final state radiation in the wave
function, which occurs after the interaction with the target has taken place.

For example, in the case of the 2 → 3 amplitude, we have to take into account graphs shown in Fig. 5. The gluon
with the cross and labeled by the momentum l is the Coulomb gluon, and the gluon with momentum P is the target
gluon. The latter one has a large P− component. The dashed lines denote the energy denominators, which have to be
taken before and after the interaction occurred. Similarly for the 2 → 4 amplitude we will need to take into account
graphs shown in Fig. 6. In general for this kinematics the number of possible classes of diagrams is n − 3 with n − 4
energy denominators both in the initial and final state. Obviously within each of these classes one needs to sum over
the different possibilities of the evolution of the wave function. For example in the case of graphs depicted in Fig. 6
there is a corresponding set of graphs where the last emitted gluon is coming from the splitting of the most upper
gluon in the hadron wave function.

Maximally Helicity Violating amplitude for gluons: 2 to n

Tree level,Parke-
Taylor formula 
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C. Relation to helicity amplitudes and the collinear limit in the on-shell case

It turns out that the variables vjk that we used to construct the wave functions in the previous subsection are
related to the variables used in the framework of helicity amplitudes, see [61] for a nice review. Namely, for given pair
of on-shell momenta ki and kj we have that

〈ij〉 =
√

zizj ε(+) ·
(

ki

zi
−

kj

zj

)

, [ij] =
√

zizj ε(−) ·
(

ki

zi
−

kj

zj

)

, (15)

where the symbols [ij], 〈ij〉 are the spinor products defined by

〈i|j〉 = 〈i − |j+〉, [ij] = 〈i + |j−〉 . (16)

The chiral projections of the spinors for massless particles are defined as

|i±〉 = ψ±(ki) =
1

2
(1 ± γ5)ψ(ki) , 〈±i| = ψ±(ki) , (17)

for a given momentum ki. The spinor products are complex square roots of the total energy mass squared for the
pair of gluons (i, j)

〈 ij 〉[ ij ] = (ki + kj)
2, (18)

and they also satisfy 〈ij〉 = [ij]∗. Using the above definitions (15,18) we have that

〈 ij 〉[ ij ] = zizj

(

ki

zi
−

kj

zj

)2

.

which is real and positive for the on-shell gluon momenta. Finally, combining (6) and (15) we obtain

〈 ij 〉 =
√

zizj ε(+) · vij , [ ij ] =
√

zizj ε(−) · vij , (19)

and the dependence on the transverse momennta in the light cone wave function can be expressed by 〈 ij 〉 and [ ij ].
Using these expressions we can check the collinear limit for the on-shell case. The Eq. (13) is part of the recursion

relation (14) for the off-shell multigluon wave function. It actually describes the situation in which the gluon with
momentum k01 splits into two daughter gluons, with momenta k0 and k1 respectively. It is interesting to investigate
the collinear limit of the on-shell amplitude, which should get factorized. To get the on-shell amplitude one needs to
drop the non-local denominator Dn in (13). The factorizable limit for gluons 0 and 1 is then

Ψ(0||1)
n+1 (k0, k1, k2, . . . , kn) =

g√
ξ01

ε(−)v01

ξ01 v2
01

Ψn(k0 + k1, k2, . . . , kn) =

=
1√
ξ01

g
√

z(1 − z)

[01]

s01
Ψn(k0 + k1, k2, . . . , kn) (20)

where z = z0/(z0 + z1) and s01 = (k0 + k1)2. Relation (20) is, modulo 1/
√

ξ01 coefficient and the sign convention,
exactly the factorization relation on the collinear poles for the kinematical parts of the dual amplitudes as shown in
[61]. It is interesting to note that the only thing that we have done here is to identify the gluons with momenta k0, k1

as originating from the splitting of the gluon with momentum k01 and therefore we have selected only one splitting
out of n − 1 possible combinations.

More to do: discuss the color factors, justify dropping of the 4 gluon vertex.

D. Multi-gluon wave function in the coordinate representation

It is interesting to investigate the form of the recursion relation (13) in the transverse coordinate representation. By
this we mean performing the Fourier transform to the transverse components of the momenta, just like in the original
dipole approach [2]. In this section we will consider a special case of the wave function where in the initial state we
have only one gluon. In the original approach the initial state was the quark-antiquark pair. We will discuss the
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This expression is the final state analog of formula (14) for the iteration of the wave function. This may be rewritten
using formula (114) for lower number of gluons:

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] = gn 1

D̃n+1

n
∑

i=1

(

z(1...i)z(i+1...n+1)

z1 . . . zi zi+1 . . . zn+1

)3/2 1

ξ3/2
(1...i)(i+1...n+1)

×
ξ(1...i)(i+1...n+1) v∗(1...i)(i+1...n+1)

(v12 . . . vi−1 i) (vi+1 i+2 . . . vn n+1)
. (119)

The expression

(

z(1...i)z(i+1...n+1)

z1 . . . zi zi+1 . . . zn+1

)3/2 1

ξ3/2
(1...i)(i+1...n+1)

=

(

z(12...n+1)

z1z2 . . . zn+1

)3/2

,

is independent of i and can be factored out in front of the sum. Taking the common denominator we finally arrive at

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] =

(

z(12...n+1)

z1z2 . . . zn+1

)3/2 gn

D̃n+1

∑n
i=1 ξ(1...i)(i+1...n+1) v∗(1...i)(i+1...n+1) vi i+1

v12v23 . . . vn n+1
=

gn

(

z(12...n+1)

z1z2 . . . zn+1

)3/2 1

v12v23 . . . vn n+1
, (120)

where to get the last line we used the proof in Eqs. (116,117) that the sum in the numerator in the first line is equal
to the energy denominator D̃n+1. The above expression is identical to (114) for n + 1 which completes the proof.

D. Consistency check of the light cone amplitudes with the MHV amplitudes

Since we have the exact expressions for the light cone wave functions and the fragmentation amplitudes we will
check here the consistency of the scattering amplitudes in this framework with the MHV amplitudes. As mentioned
previously we will make here an important simplification, namely we will consider the scattering of the light cone
wave function on a single gluon that is separated in rapidity from the rest of the cascade. The situation is depicted
schematically in Fig. 7.

0

a b

1

2

3

4

n

∆Y2

∆Y1

FIG. 7: The 2 → n + 1 on-shell gluon amplitude in the high energy limit. The gluon 0 dissociates into the gluon cascade
(indicated by a blob) which interacts via high energy gluon (with a cross) with the gluon a → b. The large rapidity difference
∆Y1 ∼ ∆Y2 between the light cone cascade and the lower gluon is taken. The arrows indicate the momentum flow: the gluons
0, a are incoming and 1, . . . , n, b are outgoing. All the gluons have + helicity and it is conserved.

Obviously it is a restriction of the kinematics, but it will simplify the computations and it still provides an important
consistency check. We are therefore assuming that the incoming gluon labeled 0, develops into a cascade of gluons
1, . . . , n and scatters on a target gluon a → b. For the high energy case the dominant contributions are given by the
instantaneous exchange of the Coulomb gluon. It is understood that the exchanged gluon can be attached to any
gluon in the cascade. Therefore we include both initial and final state emissions. However, since we are considering

Rapidity gap

Helicity conserving.
 High energy approximation: instantaneous 

gluon in the light-cone gauge

23

ba

0

l

2

1

ba

0

l

2

1

FIG. 5: Interaction of the wave function with 2 gluons with the target. The cross on the gluon line indicates that it is an
instantaneous interaction. Vertical dashed lines denote the energy denominators; short dashes (blue lines), denominators in
the initial radiation states; long dashed (red lines), denominators in the final state radiation.
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FIG. 6: Interaction of the wave function with 3 gluons with the target. The cross on the gluon line indicates that it is an
instantaneous interaction. Vertical dashed lines denote the energy denominators; short dashes (blue lines), denominators in
the initial radiation states; long dashed (red lines), denominators in the final state radiation.

It is worth to note that by taking into account the Coulomb exchange only, we have reduced the number of possible
graphs. In the case of non-Coulomb gluon exchange the number of possible different combinations of the energy
denominators would be much larger. In that case there are graphs where the t-channel gluon is exchanged for a
long time, which will change the structure of the energy denominators. Note also, that we are considering the gluon
cascade where we have only + helicity gluons. This results in the vanishing of the four gluon vertex which simplifies
the calculations further.

B. Factorization of fragmentation tree amplitudes

In constructing the full MHV amplitudes in the high energy limit we shall use the results for the initial state
evolution supplemented by the analysis of fragmentation of the scattered states into on-shell final state gluons.

The key feature of the fragmentation amplitudes is the independence of fragmentation of the gluon trees originating
from different parents. We consider a (typically disconnected) fragmentation tree with a topology Θ = Θ1 ∪ . . .∪Θm

where Θ1, . . . Θm are topologies of the fragmentation trees of m parent virtual gluons into n on-shell gluons, so
that the first parent gluon, denoted by (12 . . . n1) fragments into gluons (1, 2, . . . , n1), the second parent gluon,
(n1+1 n1+2, . . . n1) fragments into gluons (n1+1, n1+2, . . . , n2), and so on. Then the amplitude of the fragmentation
tree Θ, denoted by TΘ may be factorized into fragmentation amplitudes of the parent gluons, TΘi

in the following
way, TΘ[(1 . . . n1), (n1 + 1 . . . n2), . . . , (nm−1 . . . n) → 1, 2, . . . n],

TΘ[(1 . . . n1), (n1 + 1 . . . n2), . . . , (nm−1 . . . n) → 1, 2, . . . n] = TΘ1
[(1 . . . n1) → 1, 2, . . . n1]

× TΘ2
[(n1 + 1 . . . n2) → n1 + 1, n1 + 2, . . . n2] × . . . × TΘm

[(nm−1 + 1 . . . n) → nm−1, nm−1 + 1, . . . n], (104)

provided that we sum over all possible light-cone time orderings of the splittings within all connected trees, while
preserving the topologies. This property is not obvious in the light-cone formulation, as for a given time ordering of the
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where the energy denominator for this case

D̃3 =
3

∑

i=1

k2
i

zi
−

(k(123))
2

z(123)
. (113)

It is straightforward to verify that the numerator in the last line of (112) is equal to the denominator D̃3. Note, that
this is a case of n = 2 of the generalization of the formula Eq. (41) derived in Sec. II, in the kinematics when the
transverse momentum of the first particle in the fragmentation chain is not vanishing k(123) "= 0 and when z(12...n) "= 1.
We also used the fact that

ξ1(23)ξ23 = ξ(12)3ξ12 =
z(123)

z1z2z3
.

Based on these two examples for n = 2 and n = 3 we postulate a general formula, that generalizes computations
carried out explicitly for n ≤ 4. The conjectured amplitude of fragmentation reads

T [(12 . . . n) → 1, 2, . . . , n] = gn−1

(

z(12...n)

z1z2 . . . zn

)3/2 1

v12v23 . . . vn−1 n
. (114)

In order to prove the above formula (114) we will need first to show that the relation (113) is valid for arbitrary
values of n. The generalization of Eq. (41) can be easily shown by noting that in this case we have

v(1...i)(i+1...n)ξ(1...i)(i+1...n) =
i

∑

j=1

kj −
z(1...i)

z(1...n)

n
∑

j=1

kj = k(1...i) −
z(1...i)

z(1...n)
k(1...n) , (115)

which is also a generalization of relation (42) for the case when
∑n

j=1 kj "= 0. The analogous proof as in (41) can be
shown to proceed as follows

n
∑

i=1

v(i,i+1)ξ(1...i)(i+1...n+1)v(1...i)(i+1...n+1) =
n

∑

i=1

v(i,i+1)





i
∑

j=1

kj −
z(1...i)

z(1...n+1)

n+1
∑

j=1

kj



 =

=
n

∑

i=1

(

ki

zi
−

ki+1

zi+1

)





i
∑

j=1

kj −
z(1...i)

z(1...n+1)

n+1
∑

j=1

kj





=
n

∑

i=1

k2
i

zi
+

k2
n+1

zn+1
−

kn+1

zn+1

n+1
∑

j=1

kj −
∑n+1

j=1 kj
∑n+1

j=1 zj





n
∑

i=1

ki

zi
zi +

n
∑

i=1

ki

zi

i−1
∑

j=1

zj −
kn+1

zn+1

n
∑

j=1

zj −
n−1
∑

i=1

ki+1

zi+1

i
∑

j=1

zj



 . (116)

Again, the second and fourth terms in the [. . .] cancel and we are left with

n+1
∑

i=1

k2
i

zi
−

kn+1

zn+1

n+1
∑

j=1

kj −
∑n+1

j=1 kj
∑n+1

j=1 zj





n
∑

j=1

kj −
kn+1

zn+1





n+1
∑

j=1

zj − zn+1







 =

=
n+1
∑

i=1

k2
i

zi
−

(

∑n+1
j=1 kj

)2

∑n+1
j=1 zj

=
n+1
∑

i=1

k2
i

zi
−

(k(1...n+1))
2

z(1...n+1)
= D̃n+1 . (117)

The proof of the conjectured amplitude (114) can now be performed by mathematical induction, using the fac-
torisation property (104) and the relation (117). Let us take the fragmentation into n + 1 gluons denoted by
T [(1, 2, . . . , n + 1) → 1, 2, . . . , n + 1] and represent it by lower fragmentation factors T [(1 . . . i) → 1, . . . , i ] and
T [(i + 1 . . . n + 1) → i + 1, . . . , n + 1] by separating out the first splitting (in all possible realisations). We obtain

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] =
g

D̃n+1

n
∑

i=1

{

v∗(1...i)(i+1...n+1)
√

ξ(1...i)(i+1...n+1)

× T [(1 . . . i) → 1, . . . , i ] T [(i + 1 . . . n + 1) → i + 1, . . . , n + 1]

}

. (118)

initial state
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= g
v∗12√
ξ12

Ψn(12, 3, . . . , n + 1) + g
v∗23√
ξ23

Ψn(1, 23, . . . , n + 1) + . . . + g
v∗n n+1

√

ξn n+1

Ψn(1, 2, . . . , n n + 1) , (32)

with Dn+1 = k2
1/z1 + k2

2/z2 + · · · + k2
n+1/zn+1. We have introduced the notation Ψn(1, . . . , i − 1 i, . . . , n + 1) where

i − 1 i means that it is the gluon with the momentum ki−1 i = ki−1 + ki. After the first splitting one gets

Ψ2(1, 2) = −g∆(2) 1√
ξ12

v∗12
ξ12|v12|2

= −g∆(2) 1√
ξ12

1

ξ12v12
, (33)

where we have taken that P− = 0. According to (32), the next splitting leads from Ψ2(1, 2) to Ψ3(1, 2, 3):

−D3Ψ3(1, 2, 3) = −g∆(3)

[

v∗12√
ξ12

Ψ2(12, 3) +
v∗23√
ξ23

Ψ2(1, 23)

]

= g2∆(3)

[

v∗12
√

ξ12ξ(12)3

1

ξ(12)3 v(12)3
+

v∗23
√

ξ23ξ1(23)

1

ξ1(23) v1(23)

]

. (34)

This expression may be, after some simple algebra, simplified using ξ12ξ(12)3 = ξ23ξ1(23) = z1z2z3

z1+z2+z3
= z1z2z3. One

obtains,

Ψ3(1, 2, 3) = g2∆(3) 1
√

z1z2z3

1

ξ(12)3ξ1(23)

1

v(12)3 v1(23)
. (35)

Note that, the energy denominator D3 disappeared from the equation as it has canceled with the numerator when
finding the common denominator for expression (34). The same procedure can be iterated further. We shall give
below the explicit form of the wave function obtained for 4 gluons and then present a generalization to an arbitrary
n. Thus, for n = 4 we found:

Ψ4(1, 2, 3, 4) = −g3 ∆(4) 1
√

z1z2z3z4

1

ξ(123)4 ξ(12)(34) ξ1(234)

1

v(123)4 v(12)(34) v1(234)
, (36)

and for a general integer n > 2 one expects,

Ψn(1, 2, . . . , n) = (−1)n−1gn−1 ∆(n) 1
√

z1z2 . . . zn

1

ξ(12...n−1)n ξ(12...n−2)(n−1 n) . . . ξ1(2...n)

×
1

v(12...n−1)n v(12...n−2)(n−1 n) . . . v1(2...n)
. (37)

This formula was explicitly verified for n = 2, 3, 4, 5, 6. The proof for arbitrary n can be done by mathematical
induction and proceeds as follows. We assume that the wave function Ψn satisfies the above conjecture (37). Using
(32) the wave function Ψn+1 has then the form

− Dn+1 Ψn+1(1, 2, . . . , n + 1) = g
n

∑

i=1

v∗(i,i+1)
√

ξ(i,i+1)
Ψn(1, 2, . . . , (i i + 1), . . . , n + 1) =

(−1)n−1gn
n

∑

i=1

v∗(i,i+1)
√

ξ(i,i+1)

1
√

z1z2 . . . (zi + zi+1) . . . zn

1

(ξ(12...n)n+1 ξ(12...n−1)(n n+1) . . . ξ1(2...n+1))′
×

1

(v(12...n)n+1 v(12...n−1)(n n+1) . . . v1(2...n+1))′
. (38)

We have inserted the symbol ′ to denote the fact that the indices i i + 1 have to be taken together, or in
other words in each term of the sum in (38) for a given i the denominator does not have the term of the form
ξ(1...i)(i+1...n+1)v(1...i)(i+1...n+1). The expression under the square root is

ξ(i,i+1) z1z2 . . . (zi + zi+1) . . . zn =
zizi+1

zi + zi+1
z1z2 . . . (zi + zi+1) . . . zn = z1z2 . . . zn+1 , (39)

Ψn ∼ Tn ∼

26

where the energy denominator for this case

D̃3 =
3

∑

i=1

k2
i

zi
−

(k(123))
2

z(123)
. (113)

It is straightforward to verify that the numerator in the last line of (112) is equal to the denominator D̃3. Note, that
this is a case of n = 2 of the generalization of the formula Eq. (41) derived in Sec. II, in the kinematics when the
transverse momentum of the first particle in the fragmentation chain is not vanishing k(123) "= 0 and when z(12...n) "= 1.
We also used the fact that

ξ1(23)ξ23 = ξ(12)3ξ12 =
z(123)

z1z2z3
.

Based on these two examples for n = 2 and n = 3 we postulate a general formula, that generalizes computations
carried out explicitly for n ≤ 4. The conjectured amplitude of fragmentation reads

T [(12 . . . n) → 1, 2, . . . , n] = gn−1

(

z(12...n)

z1z2 . . . zn

)3/2 1

v12v23 . . . vn−1 n
. (114)

In order to prove the above formula (114) we will need first to show that the relation (113) is valid for arbitrary
values of n. The generalization of Eq. (41) can be easily shown by noting that in this case we have

v(1...i)(i+1...n)ξ(1...i)(i+1...n) =
i

∑

j=1

kj −
z(1...i)

z(1...n)

n
∑

j=1

kj = k(1...i) −
z(1...i)

z(1...n)
k(1...n) , (115)

which is also a generalization of relation (42) for the case when
∑n

j=1 kj "= 0. The analogous proof as in (41) can be
shown to proceed as follows

n
∑

i=1

v(i,i+1)ξ(1...i)(i+1...n+1)v(1...i)(i+1...n+1) =
n

∑

i=1

v(i,i+1)





i
∑

j=1

kj −
z(1...i)

z(1...n+1)

n+1
∑

j=1

kj



 =

=
n

∑

i=1

(

ki

zi
−

ki+1

zi+1

)





i
∑

j=1

kj −
z(1...i)

z(1...n+1)

n+1
∑

j=1

kj





=
n

∑

i=1

k2
i

zi
+

k2
n+1

zn+1
−

kn+1

zn+1

n+1
∑

j=1

kj −
∑n+1

j=1 kj
∑n+1

j=1 zj





n
∑

i=1

ki

zi
zi +

n
∑

i=1

ki

zi

i−1
∑

j=1

zj −
kn+1

zn+1

n
∑

j=1

zj −
n−1
∑

i=1

ki+1

zi+1

i
∑

j=1

zj



 . (116)

Again, the second and fourth terms in the [. . .] cancel and we are left with

n+1
∑
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k2
i

zi
−

kn+1

zn+1

n+1
∑

j=1

kj −
∑n+1

j=1 kj
∑n+1

j=1 zj





n
∑

j=1

kj −
kn+1

zn+1





n+1
∑

j=1

zj − zn+1







 =

=
n+1
∑

i=1

k2
i

zi
−

(

∑n+1
j=1 kj

)2

∑n+1
j=1 zj

=
n+1
∑

i=1

k2
i

zi
−

(k(1...n+1))
2

z(1...n+1)
= D̃n+1 . (117)

The proof of the conjectured amplitude (114) can now be performed by mathematical induction, using the fac-
torisation property (104) and the relation (117). Let us take the fragmentation into n + 1 gluons denoted by
T [(1, 2, . . . , n + 1) → 1, 2, . . . , n + 1] and represent it by lower fragmentation factors T [(1 . . . i) → 1, . . . , i ] and
T [(i + 1 . . . n + 1) → i + 1, . . . , n + 1] by separating out the first splitting (in all possible realisations). We obtain

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] =
g

D̃n+1

n
∑

i=1

{

v∗(1...i)(i+1...n+1)
√

ξ(1...i)(i+1...n+1)

× T [(1 . . . i) → 1, . . . , i ] T [(i + 1 . . . n + 1) → i + 1, . . . , n + 1]

}

. (118)
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where

A ≡ ξ01r
2
01 + z01(r

′
1 − R01)

2 + z2(r
′
2 − r2)

2 + . . . + zn(r′n − rn)2 . (27)

The integral kernel
(

− 1
π

∂
∂A

)n+1
K0

(

√

Q2A
)

can be rewritten into a more elegant form using the relations between

the modified Bessel functions and their derivatives, see for example [62]
(

d

x dx

)m

[x−nKn(x)] = (−1)mx−n−m Kn+m(x) ,

which gives

(

−
1

π

∂

∂A

)n+1

K0

(

√

Q2A
)

=
1

(2π)n+1

(

Q2

A

)

n+1
2

Kn+1(
√

Q2A) .

Using the above relations we can recast the recurrence relation (26) into

Φn+1(0, 1, . . . , n) = i
ε(−) · r01√

ξ01
z0z1z2 . . . zn

∫

d2r′1 . . . d2r′n
(2π)n+1

(

Q2

A

)

n+1
2

Kn+1(
√

Q2A) Φn(1′, 2′, . . . , n′) , (28)

with A defined above (27). The formula (26) is the prescription for the off-shell tree level wave function with exact
kinematics. Since it depends on the coordinates of all n gluons through the variable A defined above, it is quite
complicated. Also, it should be kept in mind that this is just formula for one particular splitting, one needs to sum
over all possible splittings like in (14). We will show nevertheless that in the case where the incoming particle is on-shell
there are significant simplifications, which allow to resum the multiple gluon splittings. The crucial difference with
respect to the leading logarithmic approximation with the Regge kinematics is the appearance of the modified Bessel
functions Kn+1 which contain the information about the gluon splitting. In the original approach the splitting of the
gluon leads to the expression which is just a power in the transverse coordinates. This translates into the powerlike
behavior of the splitting kernel in the dipole equation. Here, because the kinematics is kept exact the functional
dependence is governed by the Bessel functions, which for large values of their arguments have exponential behavior
asymptotically. This will result in a qualitative difference when investigating the impact parameter dependence of the
scattering amplitude. We will come back to this problem and discuss it in more detail at the end of Sec. III.

E. Resumming the multi-gluon wave function in the case of the on-shell incoming gluon

We consider here the multi-gluon wave function that originates from subsequent splittings of an on-shell incoming
gluon with helicity +. One can also alternatively think about it as the incoming particle with a large momentum

P+ such that P− = − Q2

2P+ is very small, at least as compared with the particles in the wave function. This will
result in energy denominators which do not contain the initial P−. We will assume that all gluons have + helicities
which should be a situation in the high energy limit, where the helicity flips are suppressed. We shall use the complex
representation of the transverse vectors: vij = ε(+) · vij , v∗ij = ε(−) · vij , and a useful notation,

v(i1i2...ip)(j1j2...jq) =
ki1 + ki2 + . . . + kip

zi1 + zi2 + . . . + zip

−
kj1 + kj2 + . . . + kjq

zj1 + zj2 + . . . + zjq

, (29)

ξ(i1i2...ip)(j1j2...jq) =
(zi1 + zi2 + . . . + zip

)(zj1 + zj2 + . . . + zjq
)

zi1 + zi2 + . . . + zip
+ zj1 + zj2 + . . . + zjq

, (30)

with notation ki ≡ ε(−) · ki. Let us denote the global kinematic δ function by ∆(n) = δ(2) (
∑n

i=1 ki ) δ ( 1 −
∑n

i=1 zi ).
Thus, the incoming state has the wave function,

Ψ1(1) = ∆(1). (31)

In the following discussion we will consider color ordering in the amplitudes, therefore we will suppress color degrees
of freedom. In general, for a color-ordered amplitude, the gluon splitting acts on the wave function as derived in
Eq. (14) (for on-shell initial state though)

−Dn+1 Ψn+1(1, 2, . . . , n + 1) =

Wave function
initial state

Fragmentation
final state
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color ordered amplitudes it will be sufficient to take into account the attachment to the gluons in the form of the
diagrams shown in Figs. 2 and 5. The gluons 0 and a are incoming with helicities +, and the helicity is conserved
through the interaction as well as through the whole cascade as assumed before.

In the simplest case when the upper part of the diagram is just single gluon 0 → 1 we have only 2 → 2 scattering
and the helicity is conserved. The MHV amplitude for 2 → 2 scattering (103) in this case

|M(a, 0, 1, b)| = g2

∣

∣

∣

∣

〈a0〉4

〈a0〉〈01〉〈1b〉〈ba〉

∣

∣

∣

∣

= g2 s

t
, (121)

where we have used the fact that the spinor products can be regarded as complex square roots of the Mandelstam
invariants, see formulae (18), and in this case they are equal to

| 〈a0〉 | = | 〈1b〉 | =
√

s , | 〈01〉 | = | 〈ba〉 | =
√

t .

Obviously (121) is the correct form of the 2 → 2 amplitude in the high energy limit. Let us now consider the 2 → 3
process depicted in Fig. 2. Using the light cone framework we can rewrite the upper part of both graphs in the
following way

Ψ̃2(1, 2) = T [(12) → 1, 2] + Ψ2(1, 2′) , (122)

where the first term on the right hand side of the above equation (fragmentation in the final state) corresponds to
the upper portion of left graph in Fig. 2 and the second term (the initial wave function) to the analogous part in the
graph on the right hand side. To be more precise we represent Eq. (122) graphically in Fig. 8.
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FIG. 8: Pictorial representation of Eq. (122). The downpointing arrows indicate the momentum transfer caused by the exchange
of the t channel gluon.
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The notation 2′ indicates that we need to take into account the transverse momentum carried by the exchanged
gluon (the longitudinal fraction of the gluon momentum is neglected). It is equal to l = −k(12). For the process
depicted in the last graph in Fig. 8 we have k2′ = k2 + k(12) = −k1. Putting in the explicit expressions for the wave
function Ψ2(1, 2′) Eq. (37) and T [(12) → 1, 2] Eq. (114) we obtain

Ψ̃2(1, 2) = g
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1

(z1z2)3/2
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v12
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1

v12′
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(z1 z2)3/2

v12′ − v12

v12v12′

=
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(z1 z2)3/2

z1 k(12)

k1 v12
. (123)
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color ordered amplitudes it will be sufficient to take into account the attachment to the gluons in the form of the
diagrams shown in Figs. 2 and 5. The gluons 0 and a are incoming with helicities +, and the helicity is conserved
through the interaction as well as through the whole cascade as assumed before.

In the simplest case when the upper part of the diagram is just single gluon 0 → 1 we have only 2 → 2 scattering
and the helicity is conserved. The MHV amplitude for 2 → 2 scattering (103) in this case
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Obviously (121) is the correct form of the 2 → 2 amplitude in the high energy limit. Let us now consider the 2 → 3
process depicted in Fig. 2. Using the light cone framework we can rewrite the upper part of both graphs in the
following way

Ψ̃2(1, 2) = T [(12) → 1, 2] + Ψ2(1, 2′) , (122)

where the first term on the right hand side of the above equation (fragmentation in the final state) corresponds to
the upper portion of left graph in Fig. 2 and the second term (the initial wave function) to the analogous part in the
graph on the right hand side. To be more precise we represent Eq. (122) graphically in Fig. 8.
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The notation 2′ indicates that we need to take into account the transverse momentum carried by the exchanged
gluon (the longitudinal fraction of the gluon momentum is neglected). It is equal to l = −k(12). For the process
depicted in the last graph in Fig. 8 we have k2′ = k2 + k(12) = −k1. Putting in the explicit expressions for the wave
function Ψ2(1, 2′) Eq. (37) and T [(12) → 1, 2] Eq. (114) we obtain

Ψ̃2(1, 2) = g
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Master formula for arbitrary number of gluons
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FIG. 10: Pictorial representation of Ψ̃n. The downpointing arrow indicates the momentum transfer caused by the exchange of
the t channel gluon. The sum over all possible attachments to the gluons in the cascade is performed.

We also need to include the Coulomb gluon exchange between gluon a → b and the gluons in the cascade. Before
the comparison with the MHV amplitudes we should remove the conventional 1√

z1z2...zn
prefactor, which comes from

absorbing the phase space denominator into the outgoing gluon amplitudes. The t channel gluon exchange in the high
energy limit is given by

∣

∣

∣

∣

〈a0〉4

〈a0〉 〈nb〉〈ba〉k(1...n)

∣

∣
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=
s

t
+ O(s0) . (131)

Putting everything together we obtain the amplitude for 2 → n + 1 scattering

M(0; a → 1, . . . , n; b) % gn+1 〈a0〉4

〈a0〉 〈01〉 〈12〉 〈n− 1 n〉 〈nb〉〈ba〉
, (132)

which is equivalent to the MHV amplitude (103). The approximation sign “%” is used because the exchange between
the gluon cascade and gluon a was computed in the high energy limit.

Summary

In this paper we have analyzed multi-gluon cascades with exact kinematics. Using light cone perturbation theory we
have computed the expressions for the initial wave functions with arbitrary number of gluons without any restrictions
on the kinematics. The results can be recast into the form of the recurrence relations between the wave functions with
different number of gluons. In the case when the incoming particle is on-shell, the expression for the wave function
can be resummed exactly. The natural variables which appear in the computation are closely related to the spinor
products which appear in the computation of the maximally helicity violating amplitudes.

We also analyzed the dipole evolution equation at small x, and showed that it can be improved by including the
kinematic constraints. The dipole kernel changes its functional form from the power to the modified Bessel function
of the second kind and it is no longer conformally invariant in two transverse dimensions. The characteristic diffusion
property in transverse space is then highly suppressed by the presence of the exponential tails in impact parameter.
The cutoff in the impact parameter depends on the energy and in the limit of the high energy one recovers the original
leading logarithmic approximation. By expanding the kernel in the powers of the strong coupling one can show that
it includes the part of the next-to-leading logarithmic corrections which are the double logarithmic terms. Notably,
these are the terms which violate the conformal invariance in two dimensions both in the case of the N = 4 SYM and
in the QCD case. The violation of the two-dimensional conformal symmetry is related to the fact that the modified
kernel ties the longitudinal and transverse degrees of freedom into one variable (which is the argument of the K1

function in the kernel) which can be interpreted as the invariant mass of the two partons in the cascade. This on the
other hand is obviously related to the Lorentz symmetry of the sub-amplitudes. Therefore two-dimensional conformal
symmetry is present only in the leading logarithmic approximation of the high energy limit.

We have also investigated the final state emissions within this framework. The general factorization of different
fragmentation amplitudes has been explicitly demonstrated. The fragmentation of the single gluon has been computed
and shown that it can be resummed using similar technique as for the wave function. We also have found an interesting
result, namely that the wave function and the fragmentation amplitude have identical functional form but differ in
their dependence on the kinematical invariants. This result possibly hints at some deeper duality between the initial
and final states in the theory, which needs to be further explored.

=
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For the case of the 2 → 4 process we have the following contributions

Ψ̃3(1, 2, 3) = T [(123) → 1, 2, 3] + Ψ(1, (23)′)T [(23) → 2, 3] + Ψ(12, 3′)T [(12) → 1, 2] + Ψ(1, 2, 3′) . (124)

The first term on the right hand side corresponds to the sum of the diagrams A and B in Fig. 9, the second and
the third terms correspond to the diagrams C and D, and the last term is the sum of diagrams E and F. Again, the
explicit calculation using (37) and (114) yields

Ψ̃3(1, 2, 3) = g2





1

(z1z2z3)3/2

1

v12v23
−

1

ξ3/2
1(23)

1

v1(23)′

(

1

ξ23

)3/2 1

v23

−
1

ξ3/2
(12)3

1

v(12)3′

(

1

ξ12

)3/2 1

v12
+

1
√

z1z2z3

1

ξ1(23)ξ(12)3

1

v(12)3′v1(23)′



 =
g2

(z1z2z3)3/2

k(123)z1

k1 v12 v23
. (125)

In deriving (125) we used the following relations

v1(23)′ = k1
1

z1(z2 + z3)
=

k1

ξ1(23)
, v(12)3′ = k(12)

1

z3(z1 + z2)
=

k(12)

ξ(12)3
,

as well as ξ1(23)ξ23 = ξ(12)3ξ12 = z1z2z3. The case for 2 → 5 proceeds in analogy. The corresponding expression for

Ψ̃4 can be found by taking the following sum

Ψ̃4 = Ψ4(1, 2, 3, 4′)+

Ψ3(1, 2, (34)′)T [(34) → 3, 4] + Ψ3(1, 23, 4′)T [(23) → 2, 3] + Ψ3(12, 3, 4′)T [(12) → 1, 2]+

Ψ2(1, (234)′)T [(234) → 2, 3, 4] + Ψ2(1, (234)′)T [(234) → 2, 3, 4]+

Ψ2((12), (34)′)T [(12) → 1, 2]T [(34) → 3, 4] + T [(1234) → 1, 2, 3, 4] , (126)

where we have considered all possible attachments of the Coulomb gluon. The explicit calculations are straightforward
but lengthy, with the result being

Ψ̃4 = g3 1

(z1z2z3z4)3/2

z1 k(1234)

k1 v12v23v34
. (127)

The expression for the general n can be found from the following formula

Ψ̃n(1, 2, . . . , n) =
n

∑

m=1

∑

(1≤n1<n2<...<nm−1≤n)

Ψm((1 . . . n1)(n1 + 1 . . . n2) . . . (nm−1 + 1 . . . n))

× T [(1 . . . n1) → 1, . . . , n1] T [(n1 + 1 . . . n2) → n1 + 1, . . . , n2] . . . T [(nm−1 + 1 . . . n) → nm−1 + 1, . . . , n] . (128)

This formula is obtained by taking into account all possible attachments of the exchanged gluon in the cascade. The
additional assumption is the factorisation of fragmentation of virtual gluon (104). For the complete proof one has to
use the explicit expressions for the fragmentation amplitude T given by (114) and the initial state wave function Ψn

given by (37). The general proof is quite lengthy as it is based on the recursive induction therefore we give it in the
appendix A. The final result is the following general form for the Ψ̃n for an arbitrary number of emitted gluons

Ψ̃n(1, 2, . . . n) = gn−1 k(1...n)

k1/z1

1
√

z1z2 . . . zn

1

z1z2 . . . zn

1

v12v23 . . . vn−1 n
. (129)

We see that it is a generalization of the case for n = 2, 3, 4 given in (123), (125) and (127). Note that, v01 = −k1

z1
(as

we have chosen the transverse momentum of particle 0 to vanish k0 = 0 ). This object is graphically represented in
Fig. 10. In order to facilitate the comparison with the MHV amplitude we use the relation 〈i i + 1〉 =

√
zizi+1 vi i+1

to get

Ψ̃n(1, 2, . . . n) = gn−1 1
√

z1z2 . . . zn

1
√

zn

k(1...n)

〈01〉〈12〉〈23〉 . . . 〈n − 1 n〉
. (130)
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This expression is the final state analog of formula (14) for the iteration of the wave function. This may be rewritten
using formula (114) for lower number of gluons:

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] = gn 1

D̃n+1

n
∑

i=1

(

z(1...i)z(i+1...n+1)

z1 . . . zi zi+1 . . . zn+1

)3/2 1

ξ3/2
(1...i)(i+1...n+1)

×
ξ(1...i)(i+1...n+1) v∗(1...i)(i+1...n+1)

(v12 . . . vi−1 i) (vi+1 i+2 . . . vn n+1)
. (119)

The expression
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z1z2 . . . zn+1

)3/2

,

is independent of i and can be factored out in front of the sum. Taking the common denominator we finally arrive at

T [(12 . . . n + 1) → 1, 2, . . . , n + 1] =

(
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z1z2 . . . zn+1

)3/2 gn
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v12v23 . . . vn n+1
=

gn

(

z(12...n+1)

z1z2 . . . zn+1

)3/2 1

v12v23 . . . vn n+1
, (120)

where to get the last line we used the proof in Eqs. (116,117) that the sum in the numerator in the first line is equal
to the energy denominator D̃n+1. The above expression is identical to (114) for n + 1 which completes the proof.

D. Consistency check of the light cone amplitudes with the MHV amplitudes

Since we have the exact expressions for the light cone wave functions and the fragmentation amplitudes we will
check here the consistency of the scattering amplitudes in this framework with the MHV amplitudes. As mentioned
previously we will make here an important simplification, namely we will consider the scattering of the light cone
wave function on a single gluon that is separated in rapidity from the rest of the cascade. The situation is depicted
schematically in Fig. 7.
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FIG. 7: The 2 → n + 1 on-shell gluon amplitude in the high energy limit. The gluon 0 dissociates into the gluon cascade
(indicated by a blob) which interacts via high energy gluon (with a cross) with the gluon a → b. The large rapidity difference
∆Y1 ∼ ∆Y2 between the light cone cascade and the lower gluon is taken. The arrows indicate the momentum flow: the gluons
0, a are incoming and 1, . . . , n, b are outgoing. All the gluons have + helicity and it is conserved.

Obviously it is a restriction of the kinematics, but it will simplify the computations and it still provides an important
consistency check. We are therefore assuming that the incoming gluon labeled 0, develops into a cascade of gluons
1, . . . , n and scatters on a target gluon a → b. For the high energy case the dominant contributions are given by the
instantaneous exchange of the Coulomb gluon. It is understood that the exchanged gluon can be attached to any
gluon in the cascade. Therefore we include both initial and final state emissions. However, since we are considering
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FIG. 10: Pictorial representation of Ψ̃n. The downpointing arrow indicates the momentum transfer caused by the exchange of
the t channel gluon. The sum over all possible attachments to the gluons in the cascade is performed.

We also need to include the Coulomb gluon exchange between gluon a → b and the gluons in the cascade. Before
the comparison with the MHV amplitudes we should remove the conventional 1√

z1z2...zn
prefactor, which comes from

absorbing the phase space denominator into the outgoing gluon amplitudes. The t channel gluon exchange in the high
energy limit is given by
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Putting everything together we obtain the amplitude for 2 → n + 1 scattering

M(0; a → 1, . . . , n; b) % gn+1 〈a0〉4

〈a0〉 〈01〉 〈12〉 〈n− 1 n〉 〈nb〉〈ba〉
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which is equivalent to the MHV amplitude (103). The approximation sign “%” is used because the exchange between
the gluon cascade and gluon a was computed in the high energy limit.

Summary

In this paper we have analyzed multi-gluon cascades with exact kinematics. Using light cone perturbation theory we
have computed the expressions for the initial wave functions with arbitrary number of gluons without any restrictions
on the kinematics. The results can be recast into the form of the recurrence relations between the wave functions with
different number of gluons. In the case when the incoming particle is on-shell, the expression for the wave function
can be resummed exactly. The natural variables which appear in the computation are closely related to the spinor
products which appear in the computation of the maximally helicity violating amplitudes.

We also analyzed the dipole evolution equation at small x, and showed that it can be improved by including the
kinematic constraints. The dipole kernel changes its functional form from the power to the modified Bessel function
of the second kind and it is no longer conformally invariant in two transverse dimensions. The characteristic diffusion
property in transverse space is then highly suppressed by the presence of the exponential tails in impact parameter.
The cutoff in the impact parameter depends on the energy and in the limit of the high energy one recovers the original
leading logarithmic approximation. By expanding the kernel in the powers of the strong coupling one can show that
it includes the part of the next-to-leading logarithmic corrections which are the double logarithmic terms. Notably,
these are the terms which violate the conformal invariance in two dimensions both in the case of the N = 4 SYM and
in the QCD case. The violation of the two-dimensional conformal symmetry is related to the fact that the modified
kernel ties the longitudinal and transverse degrees of freedom into one variable (which is the argument of the K1

function in the kernel) which can be interpreted as the invariant mass of the two partons in the cascade. This on the
other hand is obviously related to the Lorentz symmetry of the sub-amplitudes. Therefore two-dimensional conformal
symmetry is present only in the leading logarithmic approximation of the high energy limit.

We have also investigated the final state emissions within this framework. The general factorization of different
fragmentation amplitudes has been explicitly demonstrated. The fragmentation of the single gluon has been computed
and shown that it can be resummed using similar technique as for the wave function. We also have found an interesting
result, namely that the wave function and the fragmentation amplitude have identical functional form but differ in
their dependence on the kinematical invariants. This result possibly hints at some deeper duality between the initial
and final states in the theory, which needs to be further explored.
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Spinor products:

Recover MHV amplitude in the light cone formalism

M(0; a→ 1, . . . , n; b) " s

t
× Ψ̃n

2 to 2 amplitude

Upper part: 1 to n with 
momentum transfer. 

Obtained by summing  all 
possible attachments.



Summary
 Kinematical effects  in the gluon cascades are of major importance.

 Reformulation of the dipole kernel to include part of these effects.

 Impact parameter dependence significantly modified: exponential tails 
with the energy-dependent cutoff.

 Lack of the 2-dimensional conformal invariance: consistent with the exact 
NLL calculation.

 Resummation of the light cone wave function with exact kinematics.

 Resummation of the fragmentation amplitudes. Duality between the 
fragmentation and the wave functions.

 Derivation of the scattering amplitudes in the  light cone formalism.

 Consistency check with (new derivation of) the MHV amplitudes.


