Exact kinematics in the gluon cascade

Anna Staśto Penn State & RIKEN BNL & INP Kraków

Epiphany Conference, Kraków, January 6th, 2009

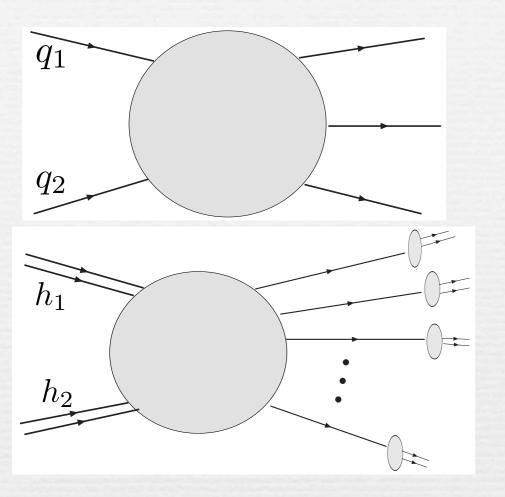
Outline

Motivation and introduction. High energy dipole evolution.

- Modified kernel for dipole evolution.
- Light cone wave functions with exact kinematics.
- Gluon fragmentation amplitudes.
- Relation with the maximally helicity violating (MHV) amplitudes.

Work done in collaboration with Leszek Motyka

Motivation



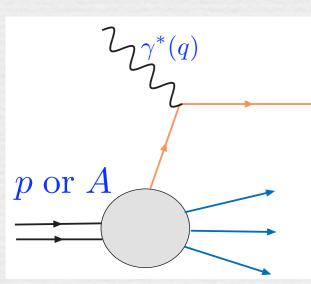
Exact kinematics straightforward when considering small number of particles

In hadronic collisions at high energy: initial state is a hadron not a parton. Many partons can be produced which further hadronize. Efficient description in terms of parton distributions and fragmentation functions.

Parton distributions

fraction of longitudinal momentum

or $f(x, k_T)$

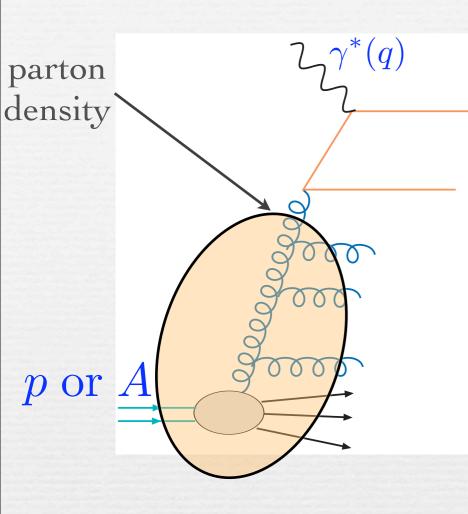


DIS process

Hard scale

 $f(\tilde{x},$

Transverse momentum



QCD description of the parton density

Multiple parton emissions +virtual processes

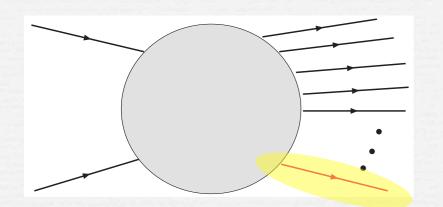
Evolution of parton density from RG-type closed equation

$$\frac{\partial}{\partial \log \mu} f = K \otimes f$$

 $\mu = Q, s$

Branching kernel has perturbative expansion

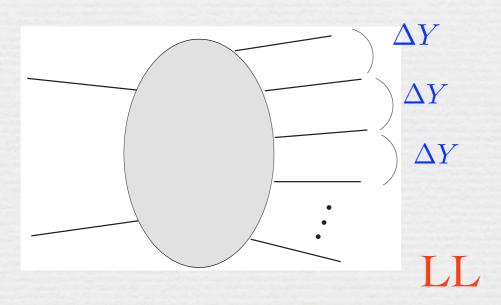
 $K = K^{(0)}\alpha_s + K^{(1)}\alpha_s^2 + K^{(2)}\alpha_s^3 + \dots$

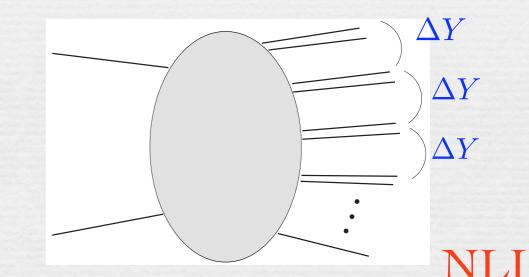


In this framework: kinematic approximations on the emissions of the partons

Branching kernel in higher orders does contain not only higher loop diagrams, but also topologically equivalent diagrams but with external partons in a different kinematic region.

Example: high energy limit $s \to \infty$



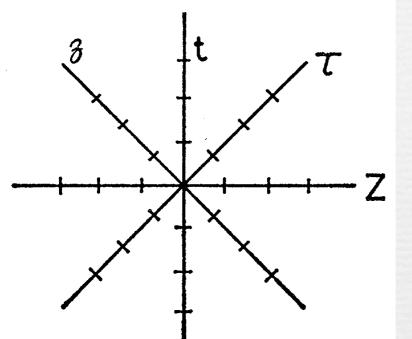


Clusters of particles in rapidity.

When $s \to \infty$, α_s is <u>not</u> a small parameter, hence expansion is slowly convergent. Perturbative methods not very efficient in correcting the kinematic approximations done on phase space.

Multiple gluon emissions in the light-cone formalism

Light-cone formalism



Infinite momentum frame: a limit of a Lorentz frame moving in the -z direction with a (nearly) the speed of light.

000000

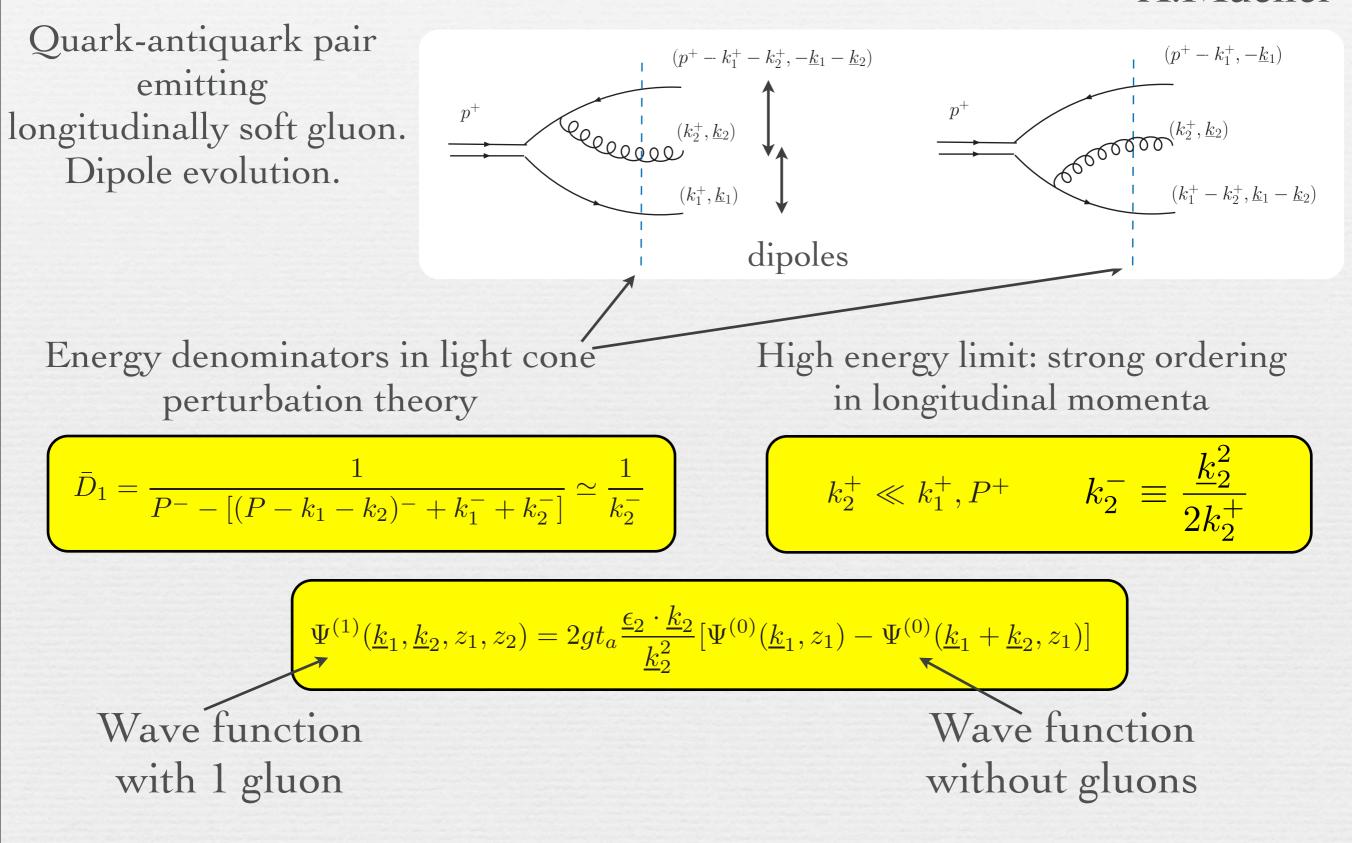
Time ordered diagram

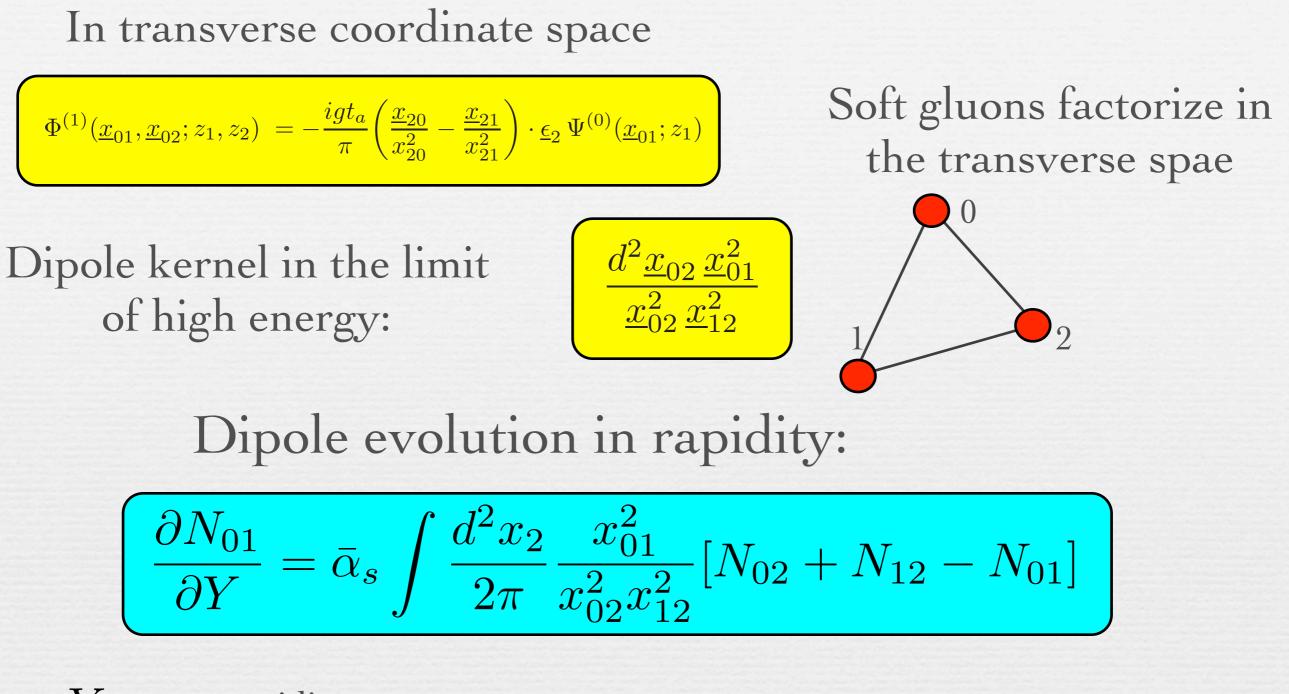
Energy denominators=

Difference of light - cone energies:

 $D_n = P^- - \sum k_i^-$

Dipole evolution at high energy A.Mueller





Y rapidity

 N_{01} dipole scattering amplitude (related to the gluon density)

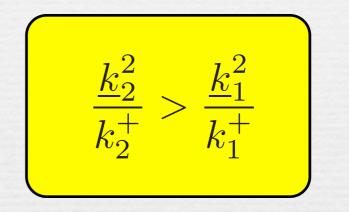
No restrictions on the transverse coordinates (or momenta).

In the high energy limit:

$$\bar{D}_1 = \frac{1}{P^- - \left[(P - k_1 - k_2)^- + k_1^- + k_2^-\right]} \simeq \frac{1}{k_2^-}$$

$$k_2^+ \ll k_1^+, P^+$$
 $k_2^- \equiv \frac{k_2^2}{2k_2^+}$

For the consistency of the calculation we should take:



For more emissions

$$\dots \frac{\underline{k}_4^2}{k_4^+} > \frac{\underline{k}_3^2}{k_3^+} > \frac{\underline{k}_2^2}{k_2^+} > \frac{\underline{k}_1^2}{k_1^+}$$

Ordering in the fluctuation time: Dokshitzer, τ ~ Marchesini, Salam

 $\frac{k^+}{k^2}$

Longitudinal and transverse momenta tied together.

Modified dipole kernel

Quasi-local approximation

Modif

$$D_1 \simeq \frac{1}{k_1^- + k_2^-}$$

Keep the energy of the parent emitter

$$\Psi^{(1)}(\underline{k}_1, \underline{k}_2, z_1, z_2) = 2gt_a \frac{\underline{\epsilon}_2 \cdot \underline{k}_2}{\underline{k}_2^2 + \underline{k}_1^2 \frac{k_2^+}{k_1^+}} [\Psi^{(0)}(\underline{k}_1, z_1) - \Psi^{(0)}(\underline{k}_1 + \underline{k}_2, z_1)]$$

Approximate Fourier transform

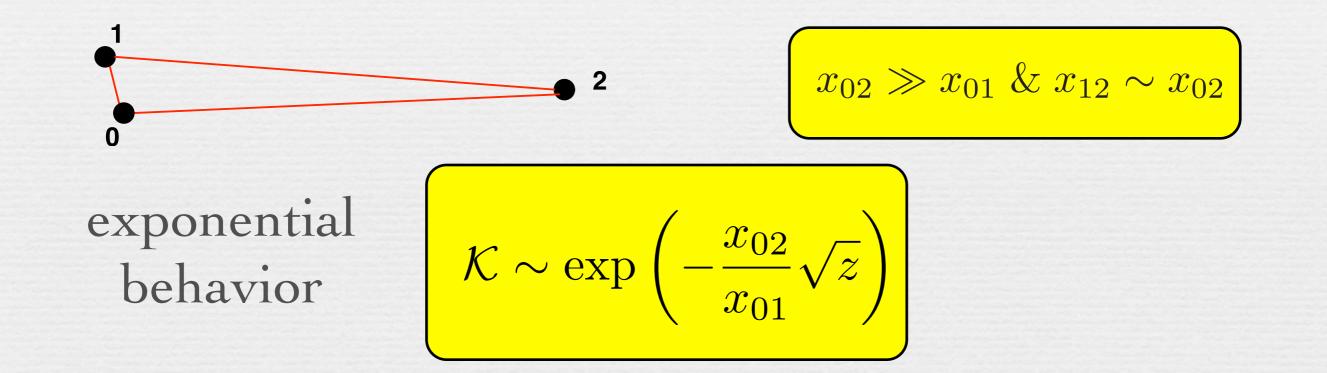
Modified dipole kernel

Dipole kernel with Bessel-Macdonald functions:

- Energy dependent cutoff in impact parameter:
 exponential tails, range depends on the energy.
- Violation of conformal invariance in 2-dimensions.
- Recovering original dipole kernel in the high energy limit.

Impact parameter and NLL correction

Cutoff on configuration of large dipoles



Recovering part of NLL contribution from explicit calculation by Balitsky and Chirilli (non-conformal part).

$$\mathfrak{K}_{\text{non-conf.}}^{\text{NLO}} \otimes N_Y \rightarrow -\frac{\bar{\alpha}_s^2}{\pi} \int \frac{d^2 \underline{x}_2 \, x_{01}^2}{x_{02}^4} \log^2(\frac{x_{02}}{x_{01}}) \, [\dots]$$

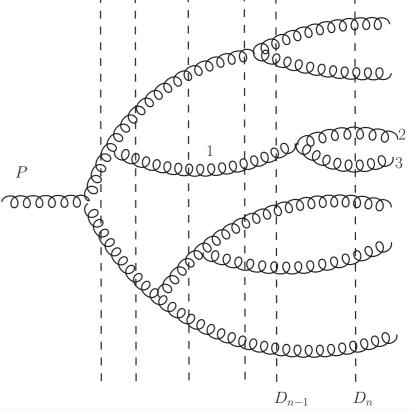
Light cone wave functions

* Previously: modified kernel, only some corrections in the energy denominators. Still eikonal vertices.

* Keep kinematics exact through the complete evolution: both vertices and energy denominators kept exact.

Gluon in the initial state. Dynamics similar to the dipole model.

Helicity conserved through the whole cascade.



Recurrence relations between wave functions

$$\begin{aligned}
\Psi_{n+1}(k_0, k_1, \dots, k_n) &= \frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_n + \xi_{01} \underline{v}_{01}^2} \Psi_n(k_{01}, k_2, \dots, k_n) \\
\xi_{01} &= \frac{z_0 z_1}{D_n + \xi_{01} \underline{v}_{01}} = \frac{\underline{k}_0}{D_n + \xi_{01} \underline{v}_{01}}
\end{aligned}$$

 \underline{U}_{01}

Light cone wave function Case of the on-shell incoming gluon. Can resum the wave function completely. $-D_{n+1}\Psi_{n+1}(1,2,...,n+1) = g \sum_{i=1}^{n} \frac{v_{(i,i+1)}^{*}}{\sqrt{\xi_{(i,i+1)}}}\Psi_{n}(1,2,...,(i+1),...,n+1) \qquad n \to n+1$

$$-D_n\Psi_n(1,2,\ldots,n) = g \sum_{k=1}^{n-1} \frac{v_{(k,k+1)}^*}{\sqrt{\xi_{(k,k+1)}}} \Psi_{n-1}(1,2,\ldots,(k\,k+1),\ldots,n) \qquad n-1 \to n$$

Tree-level gluon wave function with exact kinematics

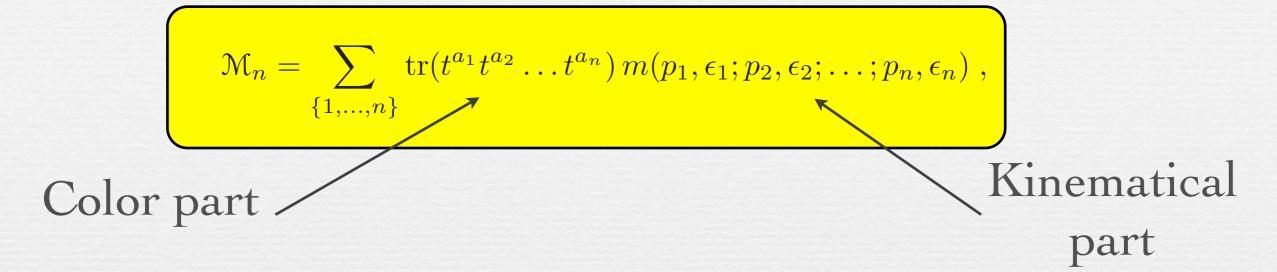
$$\Psi_n(1,2,\ldots,n) = (-1)^{n-1} g^{n-1} \Delta^{(n)} \frac{1}{\sqrt{z_1 z_2 \ldots z_n}} \frac{1}{\xi_{(12\ldots n-1)n} \xi_{(12\ldots n-2)(n-1n)} \cdots \xi_{1(2\ldots n)}}$$

$$\times \frac{1}{v_{(12...n-1)n} v_{(12...n-2)(n-1n)} \dots v_{1(2...n)}}$$

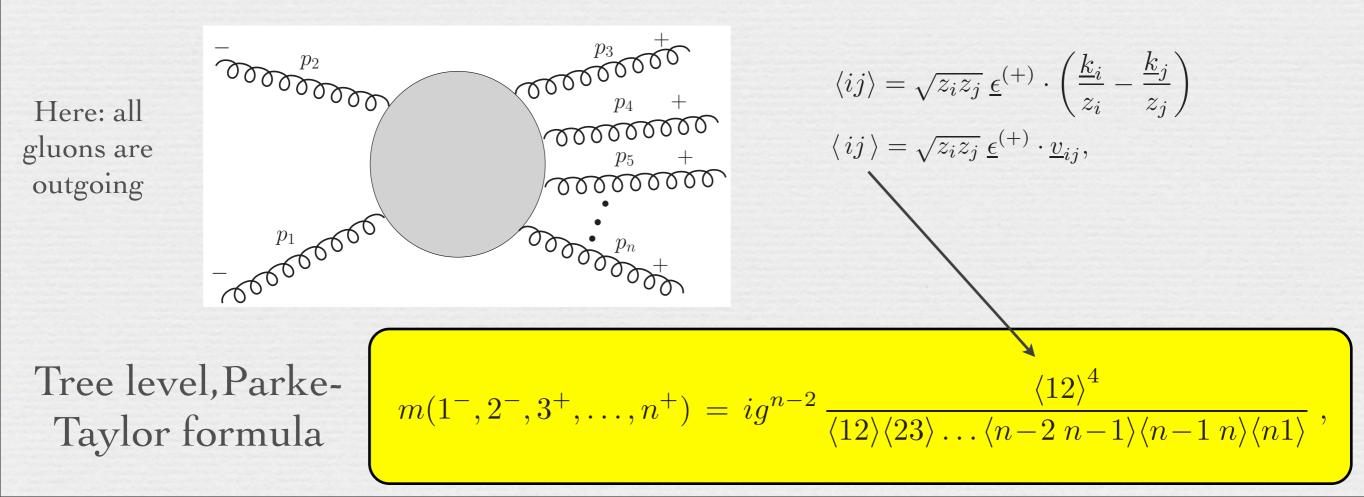
$$v_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{k_{i_1} + k_{i_2} + \dots + k_{i_p}}{z_{i_1} + z_{i_2} + \dots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \dots + k_{j_q}}{z_{j_1} + z_{j_2} + \dots + z_{j_q}}$$

$$\xi_{(i_1i_2\dots i_p)(j_1j_2\dots j_q)} = \frac{(z_{i_1} + z_{i_2} + \dots + z_{i_p})(z_{j_1} + z_{j_2} + \dots + z_{j_q})}{z_{i_1} + z_{i_2} + \dots + z_{i_p} + z_{j_1} + z_{j_2} + \dots + z_{j_q}}$$

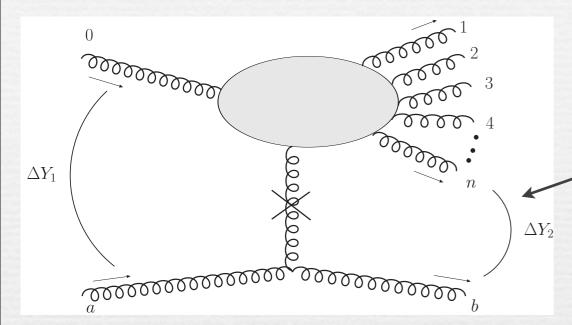
Relation to Parke-Taylor amplitudes



Maximally Helicity Violating amplitude for gluons: 2 to n



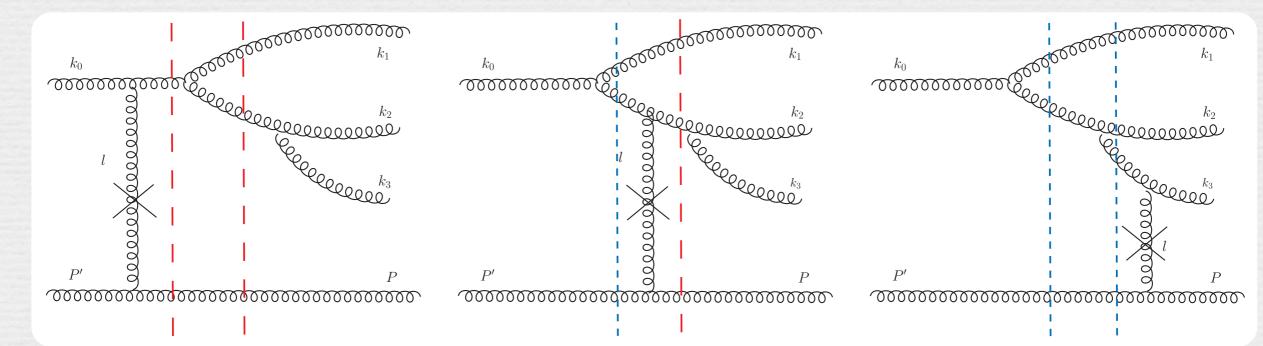
Scattering from light -cone wave functions



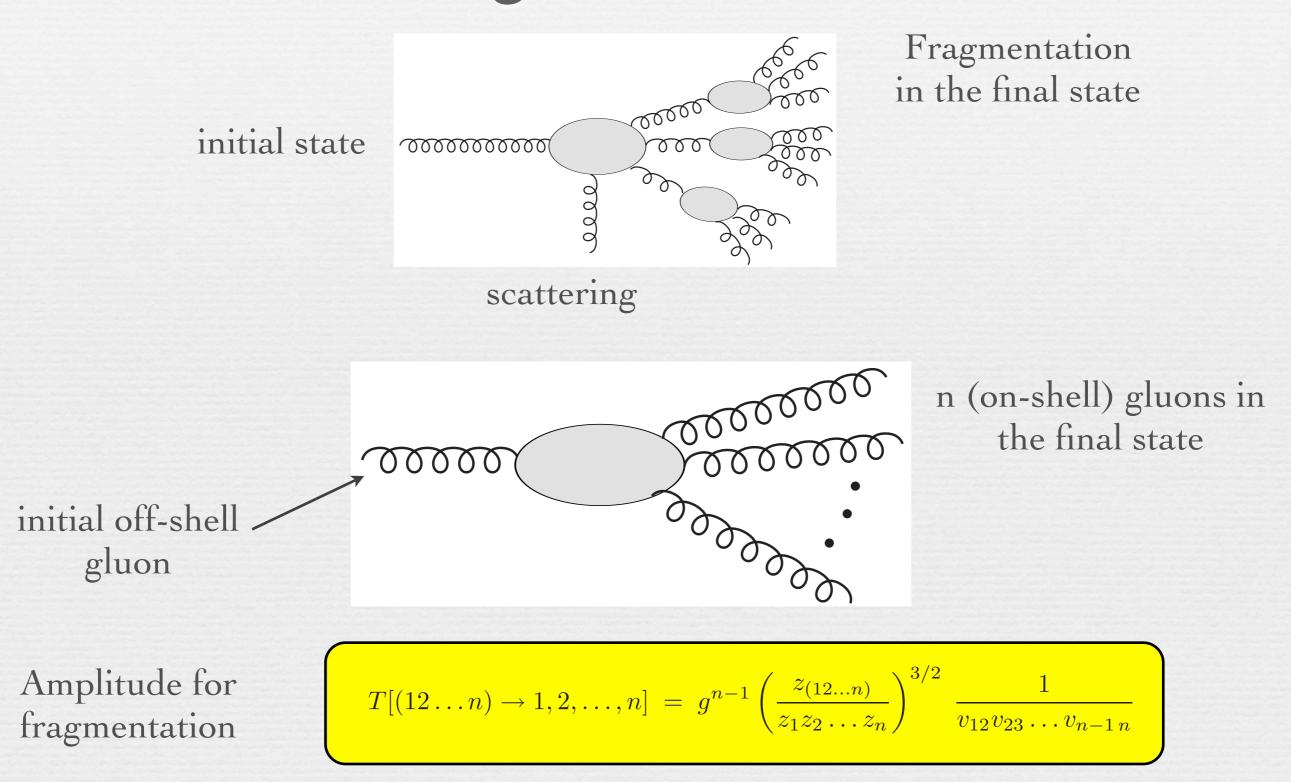
Rapidity gap

Helicity conserving. High energy approximation: instantaneous gluon in the light-cone gauge

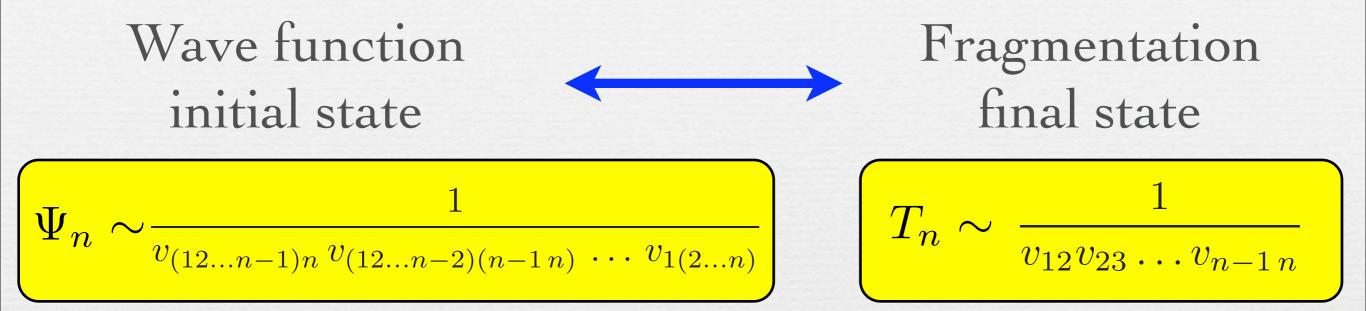
Sum over initial and final state emissions



Final state emissions: gluon fragmentation

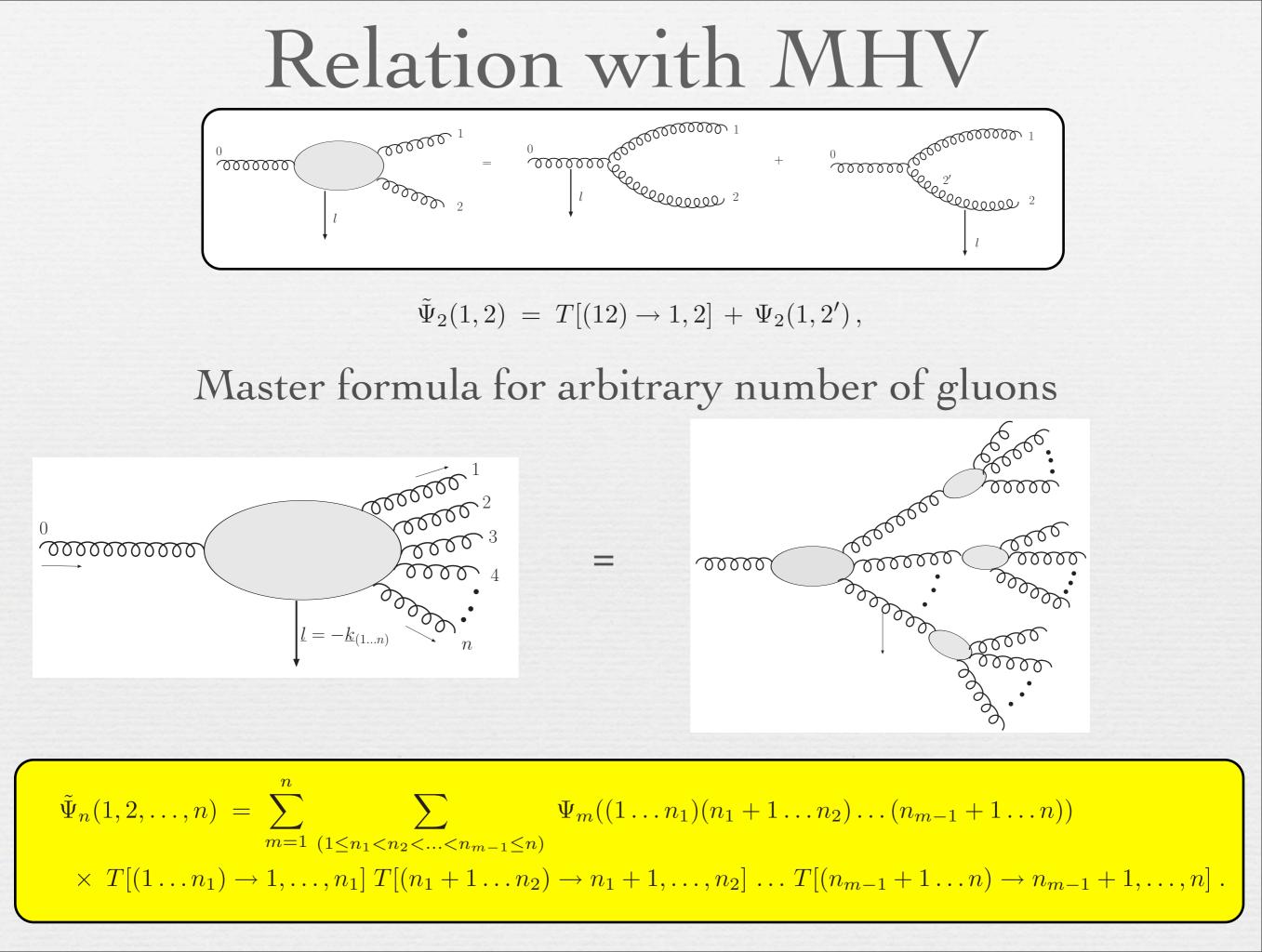


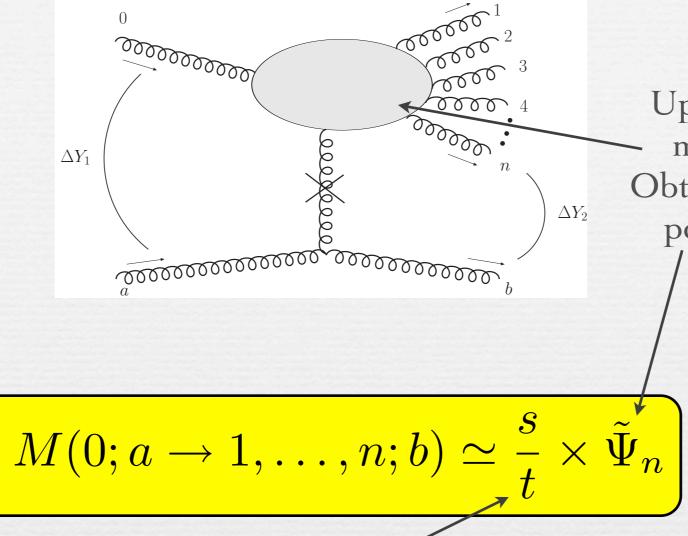
Duality: wave function vs fragmentation



Nearly identical expressions (the same topology of graphs): different combinations of momenta

$$v_{(i_1i_2...i_p)(j_1j_2...j_q)} = \frac{k_{i_1} + k_{i_2} + \ldots + k_{i_p}}{z_{i_1} + z_{i_2} + \ldots + z_{i_p}} - \frac{k_{j_1} + k_{j_2} + \ldots + k_{j_q}}{z_{j_1} + z_{j_2} + \ldots + z_{j_q}},$$





Upper part: 1 to n with - momentum transfer. Obtained by summing all possible attachments.

2 to 2 amplitude

Spinor products:

$$\langle ii+1\rangle = \sqrt{z_i z_{i+1}} v_{ii+1}$$

Recover MHV amplitude in the light cone formalism

$$M(0; a \to 1, \dots, n; b) \simeq g^{n+1} \frac{\langle a0 \rangle^4}{\langle a0 \rangle \langle 01 \rangle \langle 12 \rangle \langle n-1 n \rangle \langle nb \rangle \langle ba \rangle}$$

Summary

- Kinematical effects in the gluon cascades are of major importance.
- Reformulation of the dipole kernel to include part of these effects.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
- Lack of the 2-dimensional conformal invariance: consistent with the exact NLL calculation.
- Resummation of the light cone wave function with exact kinematics.
- Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.
- Derivation of the scattering amplitudes in the light cone formalism.
- Consistency check with (new derivation of) the MHV amplitudes.