Exact kinematics in the gluon cascade

Anna Staśto
Penn State \& RIKEN BNL \& INP Kraków

Epiphany Conference, Kraków, January 6th, 2009

Outline

* Motivation and introduction. High energy dipole evolution.
* Modified kernel for dipole evolution.
* Light cone wave functions with exact kinematics.
* Gluon fragmentation amplitudes.
* Relation with the maximally helicity violating (MHV) amplitudes.

Work done in collaboration with Leszek Motyka

Motivation

DIS process

Exact kinematics straightforward when considering small number of particles

In hadronic collisions at high energy: initial stat is a hadron not a parton. Many partons can be produced which further hadronize. Efficient description in terms of parton distributions anc fragmentation functions.

Parton distributions

Hard scale

QCD description of the parton density

Evolution of parton density

Multiple parton emissions

Evolution of parton density from RG-type closed equation

$$
\frac{\partial}{\partial \log \mu} f=K \otimes f
$$

$$
\mu=Q, s
$$

Branching kernel has perturbative expansion

$$
K=K^{(0)} \alpha_{s}+K^{(1)} \alpha_{s}^{2}+K^{(2)} \alpha_{s}^{3}+\ldots
$$

In this framework: kinematic approximations on the emissions of the partons

Branching kernel in higher orders does contain not only higher loop diagrams, but also topologically equivalent diagrams but with external partons in a different kinematic region.
Example: high energy limit $\quad s \rightarrow \infty$

Clusters of particles in rapidity.
When $s \rightarrow \infty, \alpha_{s}$ is not a small parameter, hence expansion is slowly convergent. Perturbative methods not very efficient in correcting the kinematic approximations done on phase space.

Multiple gluon emissions in
the light-cone formalism

Light-cone formalism

Infinite momentum frame: a limit of a Lorentz frame moving in the $-z$ direction with a (nearly) the speed of light.

Time ordered diagram

Energy denominators
Difference of light - cone energies:

$$
D_{n}=P^{-}-\sum_{i} k_{i}^{-}
$$

Dipole evolution at high energy

Quark-antiquark pair emitting longitudinally soft gluon. Dipole evolution.

Energy denominators in light cone perturbation theory

$$
\bar{D}_{1}=\frac{1}{P^{-}-\left[\left(P-k_{1}-k_{2}\right)^{-}+k_{1}^{-}+k_{2}^{-}\right]} \simeq \frac{1}{k_{2}^{-}}
$$

High energy limit: strong ordering in longitudinal momenta

$$
k_{2}^{+} \ll k_{1}^{+}, P^{+} \quad k_{2}^{-} \equiv \frac{\underline{k}_{2}^{2}}{2 k_{2}^{+}}
$$

In transverse coordinate space
$\Phi^{(1)}\left(\underline{x}_{01}, \underline{x}_{02} ; z_{1}, z_{2}\right)=-\frac{i g t_{a}}{\pi}\left(\frac{\underline{x}_{20}}{x_{20}^{2}}-\frac{\underline{x}_{21}}{x_{21}^{2}}\right) \cdot \underline{\epsilon}_{2} \Psi^{(0)}\left(\underline{x}_{01} ; z_{1}\right)$
Soft gluons factorize in the transverse spae

Dipole kernel in the limit of high energy:

$$
\frac{d^{2} \underline{x}_{02} \underline{x}_{01}^{2}}{\underline{x}_{02}^{2} \underline{x}_{12}^{2}}
$$

Dipole evolution in rapidity:

$$
\frac{\partial N_{01}}{\partial Y}=\bar{\alpha}_{s} \int \frac{d^{2} x_{2}}{2 \pi} \frac{x_{01}^{2}}{x_{02}^{2} x_{12}^{2}}\left[N_{02}+N_{12}-N_{01}\right]
$$

$$
Y \quad \text { rapidity }
$$

$N_{01} \quad$ dipole scattering amplitude (related to the gluon density)

No restrictions on the transverse coordinates (or momenta).

In the high energy limit:

$$
\bar{D}_{1}=\frac{1}{P^{-}-\left[\left(P-k_{1}-k_{2}\right)^{-}+k_{1}^{-}+k_{2}^{-}\right]} \simeq \frac{1}{k_{2}^{-}}
$$

$$
k_{2}^{+} \ll k_{1}^{+}, P^{+} \quad k_{2}^{-} \equiv \frac{\underline{k}_{2}^{2}}{2 k_{2}^{+}}
$$

For the consistency of the calculation we should take:

$$
\frac{\underline{k}_{2}^{2}}{k_{2}^{+}}>\frac{\underline{k}_{1}^{2}}{k_{1}^{+}}
$$

For more emissions

$$
\ldots \frac{\underline{k}_{4}^{2}}{k_{4}^{+}}>\frac{\underline{k}_{3}^{2}}{k_{3}^{+}}>\frac{\underline{k}_{2}^{2}}{k_{2}^{+}}>\frac{\underline{k}_{1}^{2}}{k_{1}^{+}}
$$

Ordering in the fluctuation time: Dokshitzer, Marchesini, Salam

Longitudinal and transverse momenta tied together.

Modified dipole kernel

Quasi-local approximation
 $$
D_{1} \simeq \frac{1}{k_{1}^{-}+k_{2}^{-}}
$$

Keep the energy of the parent emitter

$$
\Psi^{(1)}\left(\underline{k}_{1}, \underline{k}_{2}, z_{1}, z_{2}\right)=2 g t_{a} \frac{\underline{\epsilon}_{2} \cdot \underline{k}_{2}}{\underline{k}_{2}^{2}+\underline{k}_{1}^{2} \frac{k_{2}^{+}}{k_{1}^{+}}}\left[\Psi^{(0)}\left(\underline{k}_{1}, z_{1}\right)-\Psi^{(0)}\left(\underline{k}_{1}+\underline{k}_{2}, z_{1}\right)\right]
$$

Approximate Fourier transform

$$
\Phi^{(1)}\left(\underline{x}_{02}, \underline{x}_{12} ; z\right) \sim g t^{a}\left(\bar{Q}_{01} K_{1}\left(\bar{Q}_{01} x_{02}\right) \frac{\underline{\epsilon}_{2} \cdot \underline{x}_{02}}{x_{02}}-\bar{Q}_{01} K_{1}\left(\bar{Q}_{01} x_{12}\right) \frac{\underline{\epsilon}_{2} \cdot \underline{x}_{12}}{x_{12}}\right) \Phi^{(0)}\left(\underline{x}_{01} ; z\right)
$$

Modified Bessel functions of the

$$
\bar{Q}_{01} \simeq \frac{1}{x_{01}} \sqrt{\frac{k_{2}^{+}}{k_{1}^{+}}}=\frac{1}{x_{01}} \sqrt{z}
$$

Z longitudinal momentum fraction second kind.

Modified dipole kernel

$$
\underbrace{\bar{Q}_{01} K_{1}\left(\bar{Q}_{01} x_{02}\right)}_{\bar{Q}_{01} \simeq \frac{1}{x_{01}} \sqrt{\frac{k_{2}^{+}}{k_{1}^{+}}}=\frac{1}{x_{01}} \sqrt{z}}
$$

Dipole kernel with Bessel-Macdonald functions:

* Energy dependent cutoff in impact parameter: exponential tails, range depends on the energy.
* Violation of conformal invariance in 2-dimensions.
* Recovering original dipole kernel in the high energy limit.

Impact parameter and NLL correction

Cutoff on configuration of large dipoles

Recovering part of NLL contribution from explicit calculation by Balitsky and Chirilli (non-conformal part).

$$
\mathcal{X}_{\text {non conf. }}^{\text {NLO }} \otimes N_{Y} \rightarrow-\frac{\bar{\alpha}_{s}^{2}}{\pi} \int \frac{d^{2} \underline{x}_{2} x_{01}^{2}}{x_{02}^{4}} \log ^{2}\left(\frac{x_{02}}{x_{01}}\right)[\ldots]
$$

Light cone wave functions

* Previously: modified kernel, only some corrections in the energy denominators. Still eikonal vertices.
* Keep kinematics exact through the complete evolution: both vertices and energy denominators kept exact.

Gluon in the initial state. Dynamics similar to the dipole model.

Helicity conserved through the whole cascade.

Recurrence relations between wave functions

$$
\Psi_{n+1}\left(k_{0}, k_{1}, \ldots, k_{n}\right)=\frac{g}{\sqrt{\xi_{01}}} \frac{\underline{\epsilon}^{(-)} \underline{v}_{01}}{D_{n}+\xi_{01} \underline{v}_{01}^{2}} \Psi_{n}\left(k_{01}, k_{2}, \ldots, k_{n}\right)
$$

$$
\xi_{01}=\frac{z_{0} z_{1}}{z_{0}+z_{1}} \quad \underline{v}_{01}=\frac{\underline{k}_{0}}{z_{0}}-\frac{\underline{k}_{1}}{z_{1}}
$$

Light cone wave function

Case of the on-shell incoming gluon. Can resum the wave function completely.

$$
\begin{array}{rlr}
-D_{n+1} \Psi_{n+1}(1,2, \ldots, n+1)=g \sum_{i=1}^{n} \frac{v_{(i, i+1)}^{*}}{\sqrt{\xi(i, i+1)}} \Psi_{n}(1,2, \ldots,(i i+1), \ldots, n+1) & n \rightarrow n+1 \\
-D_{n} \Psi_{n}(1,2, \ldots, n)=g \sum_{k=1}^{n-1} \frac{v_{(k, k+1)}^{*}}{\sqrt{\xi_{(k, k+1)}}} \Psi_{n-1}(1,2, \ldots,(k k+1), \ldots, n) & n-1 \rightarrow n
\end{array}
$$

Tree-level gluon wave function with exact kinematics

$$
\Psi_{n}(1,2, \ldots, n)=(-1)^{n-1} g^{n-1} \Delta^{(n)} \frac{1}{\sqrt{z_{1} z_{2} \ldots z_{n}}} \frac{1}{\xi_{(12 \ldots n-1) n} \xi_{(12 \ldots n-2)(n-1 n)} \ldots \xi_{1(2 \ldots n)}}
$$

$$
\times \frac{1}{v_{(12 \ldots n-1) n} v_{(12 \ldots n-2)(n-1 n)} \ldots v_{1(2 \ldots n)}}
$$

$$
\begin{aligned}
& v_{\left(i_{1} i_{2} \ldots i_{p}\right)\left(j_{1} j_{2} \ldots j_{q}\right)}=\frac{k_{i_{1}}+k_{i_{2}}+\ldots+k_{i_{p}}}{z_{i_{1}}+z_{i_{2}}+\ldots+z_{i_{p}}}-\frac{k_{j_{1}}+k_{j_{2}}+\ldots+k_{j_{q}}}{z_{j_{1}}+z_{j_{2}}+\ldots+z_{j_{q}}}, \\
& \xi_{\left(i_{1} i_{2} \ldots i_{p}\right)\left(j_{1} j_{2} \ldots j_{q}\right)}=\frac{\left(z_{i_{1}}+z_{i_{2}}+\ldots+z_{i_{p}}\right)\left(z_{j_{1}}+z_{j_{2}}+\ldots+z_{j_{q}}\right)}{z_{i_{1}}+z_{i_{2}}+\ldots+z_{i_{p}}+z_{j_{1}}+z_{j_{2}}+\ldots+z_{j_{q}}},
\end{aligned}
$$

Relation to Parke-Taylor amplitudes

Maximally Helicity Violating amplitude for gluons: 2 to n

Here: all gluons are outgoing

$$
\langle i j\rangle=\sqrt{z_{i} z_{j}} \underline{\epsilon}^{(+)} \cdot\left(\frac{\underline{k}_{i}}{z_{i}}-\frac{\underline{k}_{j}}{z_{j}}\right)
$$

$$
\langle i j\rangle=\sqrt{z_{i} z_{j}} \underline{\epsilon}^{(+)} \cdot \underline{v}_{i j},
$$

Tree level,ParkeTaylor formula

$$
m\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)=i g^{n-2} \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n-2 n-1\rangle\langle n-1 n\rangle\langle n 1\rangle}
$$

Scattering from light -cone wave functions

Sum over initial and final state emissions

 ।

$\cdots \infty m \infty$

10000000000000010000000

Final state emissions: gluon fragmentation

Fragmentation in the final state

n (on-shell) gluons in the final state

Amplitude for fragmentation

$$
T[(12 \ldots n) \rightarrow 1,2, \ldots, n]=g^{n-1}\left(\frac{z_{(12 \ldots n)}}{z_{1} z_{2} \ldots z_{n}}\right)^{3 / 2} \frac{1}{v_{12} v_{23} \ldots v_{n-1 n}}
$$

Duality:

wave function vs fragmentation

Wave function initial state

Fragmentation final state

$$
\Psi_{n} \sim \frac{1}{v_{(12 \ldots n-1) n} v_{(12 \ldots n-2)(n-1 n)} \cdots v_{1(2 \ldots n)}}
$$

$$
T_{n} \sim \frac{1}{v_{12} v_{23} \ldots v_{n-1} n}
$$

Nearly identical expressions (the same topology of graphs): different combinations of momenta

$$
v_{\left(i_{1} i_{2} \ldots i_{p}\right)\left(j_{1} j_{2} \ldots j_{q}\right)}=\frac{k_{i_{1}}+k_{i_{2}}+\ldots+k_{i_{p}}}{z_{i_{1}}+z_{i_{2}}+\ldots+z_{i_{p}}}-\frac{k_{j_{1}}+k_{j_{2}}+\ldots+k_{j_{q}}}{z_{j_{1}}+z_{j_{2}}+\ldots+z_{j_{q}}},
$$

Relation with MHV

$$
\tilde{\Psi}_{2}(1,2)=T[(12) \rightarrow 1,2]+\Psi_{2}\left(1,2^{\prime}\right),
$$

Master formula for arbitrary number of gluons

$$
\begin{aligned}
\tilde{\Psi}_{n}(1,2, \ldots, n) & =\sum_{m=1}^{n} \sum_{\left(1 \leq n_{1}<n_{2}<\ldots<n_{m-1} \leq n\right)} \Psi_{m}\left(\left(1 \ldots n_{1}\right)\left(n_{1}+1 \ldots n_{2}\right) \ldots\left(n_{m-1}+1 \ldots n\right)\right) \\
\times T\left[\left(1 \ldots n_{1}\right)\right. & \left.\rightarrow 1, \ldots, n_{1}\right] T\left[\left(n_{1}+1 \ldots n_{2}\right) \rightarrow n_{1}+1, \ldots, n_{2}\right] \ldots T\left[\left(n_{m-1}+1 \ldots n\right) \rightarrow n_{m-1}+1, \ldots, n\right] .
\end{aligned}
$$

Spinor products:

$$
\langle i i+1\rangle=\sqrt{z_{i} z_{i+1}} v_{i i+1}
$$

Recover MHV amplitude in the light cone formalism

$$
M(0 ; a \rightarrow 1, \ldots, n ; b) \simeq g^{n+1} \frac{\langle a 0\rangle^{4}}{\langle a 0\rangle\langle 01\rangle\langle 12\rangle\langle n-1 n\rangle\langle n b\rangle\langle b a\rangle},
$$

Summary

- Kinematical effects in the gluon cascades are of major importance.
* Reformulation of the dipole kernel to include part of these effects.
- Impact parameter dependence significantly modified: exponential tails with the energy-dependent cutoff.
* Lack of the 2-dimensional conformal invariance: consistent with the exact NLL calculation.
* Resummation of the light cone wave function with exact kinematics.
* Resummation of the fragmentation amplitudes. Duality between the fragmentation and the wave functions.
* Derivation of the scattering amplitudes in the light cone formalism.
* Consistency check with (new derivation of) the MHV amplitudes.

