

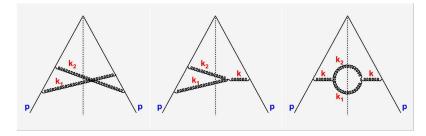
Infra-red nonabelian cancellations in the unintegrated NLO kernel

Magdalena Sławińska and Aleksander Kusina INP PAN, Kraków

January 7, 2009

Partly supported by EU grant MRTN-CT-2006-035505

Cracow Epiphany Conference


Construction of NLO kernel

- We follow Curci, Furmanski, Petronzio (CFP) scheme (axial gauge, dimensional regularisation).
- Cross-section for the process factorises:

$$\bigvee_{\substack{\mathbf{M}\\\mathbf{M}\\\mathbf{M}}} = \bigvee_{\substack{\mathbf{p}\\\mathbf{q}\\\mathbf{r}\\\mathbf{r}}} + \bigvee_{\substack{\mathbf{K}\\\mathbf{K}\\\mathbf{r}\\\mathbf{r}}} + \cdots \\ M = C_0(1 + K_0 + K_0^2 + \cdots) = C_0\Gamma_0$$

- All infra-red singularities in Γ_0 .
- Kernel extracted from a single pole in Γ_0

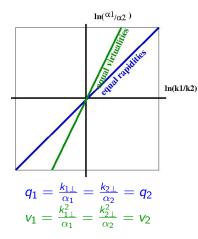
Diagrams contributing to non-abelian part of the kernel (subset)

 $k_{1} = \alpha_{1}p + \alpha_{1}^{-}n + \mathbf{k}_{1\perp}$ $k_{2} = \alpha_{2}p + \alpha_{2}^{-}n + \mathbf{k}_{2\perp}$ $k = k_{1} + k_{2}$ $q = p - k_{1} - k_{2}$ $(a) = k_{1} + k_{2} = k_{1} + k_{2}$

Unintegrated NLO kernel

Two-gluons phase space parametrised with Sudakov variables: α_1 , α_2 , $k_{1\perp}$, $k_{2\perp}$.

• max
$$\{k_{1\perp}, k_{2\perp}\} = Q^2$$
 fixed.


- $1 x = \alpha_1 + \alpha_2$ (set to 0.6 on all plots).
- angle between $k_{1\perp}$ and $k_{2\perp}$ integrated over.

In the following we will use a dimensionless

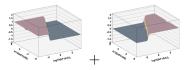
$$y = \begin{cases} \frac{k_{1\perp}^2}{Q^2} & \text{if } k_{1\perp} < k_{2\perp} \\ \frac{k_{2\perp}^2}{Q^2} & \text{if } k_{2\perp} < k_{1\perp} \end{cases}$$

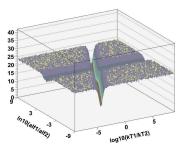
Trace over color \rightarrow abelian and non-abelian parts of the kernel. Phase space normalised as follows: $d\Psi = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{dk_{1\perp}}{k_{1\perp}} \frac{dk_{2\perp}}{k_{2\perp}}$

Sudakov variables for two real gluons

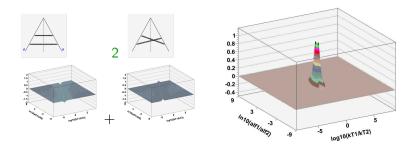
In log variables singularities moved to the domain:

- I₀ single logarithmic infinite lines ("rows") in these variables.
 - *I*₁ double logarithmic infinite in two dimensions ("triangles").


Short interlude - cancellations in the abelian part



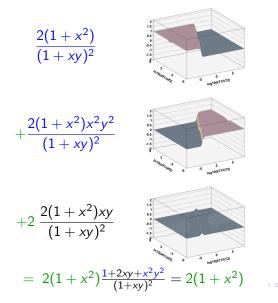
Double gluon emission ladders contribute in different regions of phase-space.



Their sum has a single-log singularity along the line of equal virtualities...

6/14

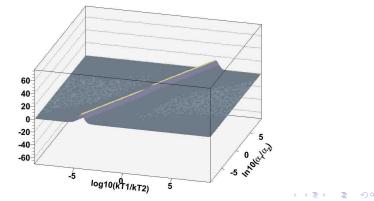
Cancellations in the abelian part


... which, after adding the crossed-ladder diagram:

turns out to be regular in the soft sudakov limit!

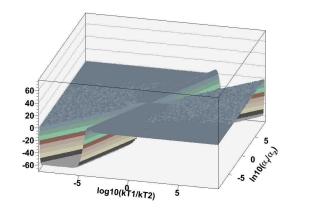
<ロ> <同> <同> < 回> < 回>

Abelian cancellations - analytically

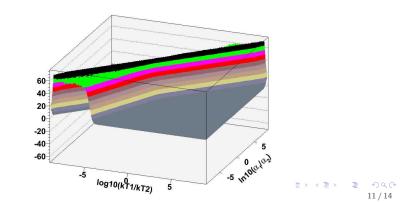


4 ロ ト 4 日 ト 4 注 ト 4 注 ト 注 少 Q (や
8 / 14

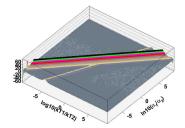
Nonabelian diagrams:


Single log singularity l_0 along the line of equal virtualities

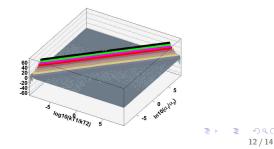
9/14


Double log singlarity l_1 - infinite plateau between the line of equal rapidities and virtualities Single log singularity l_0 along the line of equal virtualities

Double log singlarity l_1 - infinite plateau between the line of equal rapidities and virtualities Single log singularity l_0 along the line of equal virtualities


Singularity in effective mass k^2 of the gluon pair (not discussed here)

Cancellations - numerical test


Yg + Vg =

Full cancellation of I_1 !

$$Yg + Vg - Bx =$$

*I*⁰ cancelled!!!

Conclusions for Monte Carlo

Work still in progress, but regular infra-red structure in both QCD and QED-like part already observed.

- Cancellation of double- and single-logarithmic (colour coherence effects) soft sudakovian divergencies!
- in both abelian and non-abelian diagrams!
- Color coherence effects important!
- Regular structure of the unintegrated kernel