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1. Introduction 1.1 Transversally thermalized matter (1/2)

Transversally thermalized matter

Motivation ...
Evolution of the system created in heavy-ion collisions at RHIC energies
best described by hydrodynamics of an almost perfect fluid
Standard hydrodynamics assumes three-dimensional (3D) thermalization

Puzzle: this approach demands early thermalization to describe v2, BUT
such fast local equilibration is hard to achieve with elastic perturbative
cross-sections

Possible solution: at early stages of the evolution, the hydrodynamic
approach applies only to the transverse degrees of freedom

... and origin of the model
Concept initially formulated by Heinz and Wong, PRC 66 (2002) 014907
Different implementation of this idea given recently by Bialas et al., Phys.
Lett., B661 (2008) 325
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1. Introduction 1.1 Transversally thermalized matter (2/2)

Transversally thermalized matter
System is a superposition of
non-interacting transverse clusters

Cluster is formed by particles moving
with the same value of rapidity

Single cluster is described by 2D
hydrodynamics

n0 describes density of clusters in
rapidity

y

x
rapidity

2D hydrodynamics
n0

- vÈÈ + vÈÈ

We use the following definitions of
rapidity and spacetime rapidity ...

y =
1
2

ln
E + p‖
E − p‖

η =
1
2

ln
t + z
t − z

... and standard parameterization of the four-momentum and spacetime
coordinate

pµ =
(
E , ~p⊥, p‖

)
=
(
m⊥ cosh y , ~p⊥,m⊥ sinh y

)
xµ =

(
t , ~x⊥, z

)
=
(
τ cosh η,~x⊥, τ sinh η

)
τ =

√
t2 − z2 m⊥ =

√
m2 + p2

x + p2
y
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2. Hydrodynamical equations for transversally thermalized matter 2.1 Energy-momentum conservation laws

Energy-momentum conservation laws
Hydrodynamic equations for transversally thermalized matter follow from
energy-momentum conservation laws

∂µTµν = 0
Formalism is based on specific form of the Tµν tensor

Tµν =
n0

τ
[(ε2 + P2) UµUν − P2 (gµν + VµV ν)]

TµνLRF = n0
τ

diag(ε2,P2,P2, 0)

The four vectors Uµ and Vµ are defined by the equations

Uµ = (u0 cosh η,ux ,uy ,u0 sinh η)
Vµ = (sinh η,0,0, cosh η)

where u0,ux ,uy are the components of the four-velocity of the fluid element in
the rest frame of the cluster

uµ = (u0, ux , uy , 0) =
(
u0,
−→u ⊥, 0

)
u2

0 −
−→u 2
⊥ = 1 u0 =

(
1− v2

)− 1
2

Radosław Ryblewski (IFJ PAN) Transverse hydrodynamics January 5, 2009 5 / 16



2. Hydrodynamical equations for transversally thermalized matter 2.2 Adiabaticity of the flow

Adiabaticity of the flow

Energy-momentum conservation laws lead to the entropy conservation

Uν∂µTµν = T∂µSµ = 0

where the entropy current is defined by the expression

Sµ =
n0

τ
s2Uµ ε2 + P2 = Ts2

The use of the entropy conservation in energy-momentum conservation laws
leads to the analog of the Euler equation

Uµ∂µ (TUν) = ∂νT + V νVµ∂µT

The dynamics of the system is specified by three independent equations for four
unknown functions s2,T ,ux ,uy . The EOS, which specifies s2 (T ), is needed to
close the system.
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2. Hydrodynamical equations for transversally thermalized matter 2.3 Cylindrical coordinates

Cylindrical coordinates
We introduce cylinrical coordinates r and φ

r =
√

r2
x + r2

y

φ = arctan (ry/rx )

x⊥ = (rx , ry )

Parameterization of the fluid velocity takes form

vx = v cos(α+ φ)

vy = v sin(α+ φ)

ux = u0vx

uy = u0vy x

y

r

f

av
v v RT

Hydrodynamic equations may be written explicitly in the form
∂

∂τ
(rs2u0) +

∂

∂r
(rs2u0v cosα) +

∂

∂φ
(s2u0v sinα) = 0

∂

∂τ
(rTu0v) + r cosα

∂

∂r
(Tu0) + sinα

∂

∂φ
(Tu0) = 0

Tu2
0v
(

dα
dτ

+
v sinα

r

)
− sinα

∂T
∂r

+
cosα

r
∂T
∂φ

= 0

the derivative d/dτ denotes the total derivative with respect to time
d

dτ
=

∂

∂τ
+ v cosα

∂

∂r
+

v sinα
r

∂

∂φ
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2. Hydrodynamical equations for transversally thermalized matter 2.4 Breaking of boost-invariance

Breaking of boost-invariance

The conservation of the tensor Tµν implies the conservation of the tensor Tµν(η)

∂µTµν = 0⇒ ∂µTµν
(η) = ∂µ [n0(η)Tµν ] = 0

y

x
rapidity

2D hydrodynamics
n0

- vÈÈ + vÈÈ

The density of the transverse clusters n0 may depend on spacetime rapidity η. It
means that formalism is not necessarily boost-invariant.
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2. Hydrodynamical equations for transversally thermalized matter 2.5 Landau matching conditions

Landau matching conditions
Expected transition 2D→ 3D hydrodynamics may be described by assuming the
Landau matching conditions at the transition point

TµνUν = Tµν3D Uν

where Tµν3D is the standard energy-momentum tensor of relativistic
hydrodynamics of perfect fluid

Tµν3D = (ε+ P)UµUν − Pgµν

The equivalent condition is local conservation of energy and momentum at the
transition point

n0

τ
ε2Uµ = εUµ

Additional condition is the entropy production

n0

τ
s2 < s

Such transition described in terms of dissipative hydrodynamics by P.Bożek
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3. Thermodynamics of two-dimensional systems 3.1 2D thermodynamic quantities (1/2)

2D thermodynamic quantities
2D thermodynamic densities follow directly from 2D potential Ω of
non-interacting bosons (upper signs) or fermions (lower signs)

Ω(T ,V2, µ) = ±νgTV2

∫
d2p⊥
(2π)2 ln

(
1∓ e(µ−m⊥)/T

)
gluon dominated systems→ νg = 8 (gluon states)× 2 (spin ↑↓)

number of particles not conserved→ µ = 0

N2 = νgV2

∫
d2p⊥
(2π)2

g P2 = νg

∫
d2p⊥
(2π)2

p2
⊥

2m⊥
g

S2 = −νgV2

∫
d2p⊥
(2π)2

[g ln g ∓ (1± g) ln (1± g)]

E2 = νgV2

∫
d2p⊥
(2π)2

m⊥ g

the equilibrium distribution function

g(m⊥) =
1

em⊥/T ∓ 1
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3. Thermodynamics of two-dimensional systems 3.1 2D thermodynamic quantities (2/2)

A. Massless fermions and bosons

(fermions) (bosons)

n2 =
νgπT 2

24
,

ε2 =
3νgζ(3)T 3

4π

n2 =
νgπT 2

12
,

ε2 =
νgζ(3)T 3

π

P2 =
1
2
ε2, c2

s =
∂P2

∂ε2
=

1
2
.

B. Classical limit (finite masses)
n2 =

νgT
2π

(m + T )e−m/T

P2 =
νgT 2

2π
(m + T )e−m/T

s2 =
νg

2π
[m2 + 3mT + 3T 2]e−m/T

ε2 =
νgT
2π

[T 2 + (m + T )2]e−m/T

c2
s =

T (m2 + 3mT + 3T 2)

m3 + 3m2T + 6mT 2 + 6T 3

lim
m→0
−→

n2 =
νgT 2

2π

P2 =
νgT 3

2π

s2 =
3νgT 2

2π

ε2 =
νgT 3

π

c2
s =

1
2
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4. Distribution function 4.1 Lorentz structure of the distribution function

Lorentz structure of the distribution function

Factorization of the phase-space

distribution function

F (x , p) = f‖ geq

f‖ - non-equilibrium longitudinal part
→ free − streaming

geq - equilibrium transverse part
→ 2D hydrodynamic expansion

Longitudinal part is given by the
expression which implements
condition y = η

f‖ = n0
δ(y − η)

m⊥τ
=

n0

τ
δ (pµVµ)

Transversal part, in the case of local
equilibrium, has the form

g (pµUµ) =
1

epµUµ/T ∓ 1

pµUµ = m⊥u0 cosh(y − η)− ~p⊥ · ~u⊥

y

x z

geqfÈÈ
- vÈÈ + vÈÈ
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4. Distribution function 4.2 Moments of the distribution function (1/3)

Moments of the distribution function

Particle current is defined by the first moment of the distribution function

Nµ =
n0νg

(2π)2τ

∫
d3p
p0 pµδ(p · V )g(p · U)

Nµ may be written as the linear combination

Nµ = a Vµ + b Uµ

Performing projections of the particle current on the proper four vectors we
obtain coefficients which can be calculated in the local rest frame of the fluid
where Uµ = (1, 0, 0, 0) and Vµ = (0, 0, 0, 1)

Nµ =
n0

τ
n2Uµ
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4. Distribution function 4.2 Moments of the distribution function (2/3)

Moments of the distribution function
Energy-momentum tensor is defined in the following way

Tµν =
n0νg

(2π)2τ

∫
d3p
p0 pµpνδ(p · V )g(p · U)

and should have the following structure

Tµν = a ′UµUν + b ′gµν + c ′VµVν +
d ′

2
(UµVν + UνVµ)

Simple algebra gives

Tµµ = a ′ + 4b ′ − c ′

TµνUµUν = a ′ + b ′

TµνVµVν = −b ′ + c ′

TµνUµVν = TµνUνVµ = −d ′

2
This method, by solving system of equations, quite easily yields

Tµν =
n0

τ
[(ε2 + P2) UµUν − P2 (gµν + VµV ν) ]
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4. Distribution function 4.2 Moments of the distribution function (3/3)

Moments of the distribution function

Entropy current is defined in the following way

Sµ = − n0νg

(2π)2τ

∫
d3p
p0 pµ δ(p · V )g(p · U)[ ln[g(p · U)]− 1 ]

We use the Boltzmann expression to calculate the entropy of a single cluster and
then the sum over clusters is performed.

We expect
Sµ = a ′′Vµ + b ′′Uµ

Finally we obtain
Sµ =

n0

τ
s2Uµ

Radosław Ryblewski (IFJ PAN) Transverse hydrodynamics January 5, 2009 15 / 16



5. Conclusions

Conclusions

Generally covariant formalism for hydrodynamical description of transversally
thermalized matter has been provided

Thermodynamics of two-dimensional systems has been analyzed

Moments of the phase-space distribution function have been derived

Hydrodynamic equations have been derived from the general form of the
energy-momentum tensor
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