The Impact of HERA Physics for LHC

Andrei Nikiforov (DESY, Germany)

On behalf of the H1 and ZEUS Collaborations

Epiphany 2009, Cracow, 5-7 January 2009

Deep Inelastic Scattering: a straightforward tool to "look" inside a proton

Impact to LHC

- LHC main body of phase space, i.e. ~1 TeV @ central rapidity corresponds to HERA's x region of 10⁻⁴ < x < 10⁻¹
- At LHC most of the cross sections are due to gluons, whose PDFs are mainly determined by HERA

HERA provides key and essential inputs to LHC

Inclusive NC and CC Measurments

Combined Cross Sections: H1 and ZEUS

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS

Systematic uncertainties reduced together with statistical errors

Proton Structure:

HERA I e⁺p Neutral Current Scattering - H1 and ZEUS

HERA Structure Functions Working Group

Common PDF Fit On HERA I Combined Data

Partons are parametrized at at $Q_0^2 = 4 \text{ GeV}^2$ (Data $Q^2 > 3.5 \text{ GeV}^2$)

Improvement in the precision

HERAPDF0.1 versus CTEQ and MSTW

• Uncertainty on low x gluon and sea is strongly reduced

HERAPDF0.1 Impact On LHC

M. Cooper / E. Perez

HERAPDF0.1 is released in LHAPDF (version 5.6.0) .. to be exercised by LHC experiments

Proton Structure: Valence Quarks at High x

• To be performed for all HERA data

QCD Dynamics: the Strong Coupling α_s From Multi-jet Rates

QCD Dynamics: Heavy Quark PDFs and Gluons

14

Directly Probing the Gluon With FL

• $F_L = 0$ at naïve Quark-Parton-Model, i.e. w/o QCD

• F_L at small x: a very good test of small x parton dynamics / evolution

• HERA is the only place to where F_L can be measured at small x

Measured $F_L vs Q^2$

H1 Preliminary F

- *F_L* predicted by QCD fits using gluon that was derived from scaling violation of *F₂* is consistent with the measurement
- Measurements at lower Q² are ongoing

Summary

- HERA ended its run at June 2007: ~1 fb⁻¹ collected by H1 and ZEUS
- HERA provides most precise inclusive structure function measurements, which brought significant improvements to our knowledge on proton structure
 - Combination of H1 and ZEUS cross-sections brought significantly improved precision of data
- New high precision results expected in future will further improve our understanding on proton structure
 - > Inclusive measurement at high x and Q^2 using full HERA data set
 - Measurement with jets to determine the gluon and the strong coupling
 - > Direct measurement of F_L at lowest x / Q^2
 - Precise measurements of the heavy flavor content
- Final publications with ultimate precision to come in the next years
- HERA provides essential inputs to LHC