Traveling waves and impact-parameter correlations in high-energy QCD

Stéphane Munier

CPHT, École Polytechnique, CNRS Palaiseau, France

Cracow, January 6, 2009 Epiphany conference dedicated to the memory of Jan Kwieciński

$$A(Y, \mathbf{r}) = \int d^2 b A(Y, b, \mathbf{r}) = elastic \ amplitude$$
$$A(Y, b, \mathbf{r}) = fixed \ impact \ parameter \ amplitude \ \leq 1$$

(High) energy dependence of QCD amplitudes?

QCD and statistical physics

Iancu, Mueller, Munier (2004)

We identified the <u>universality class</u> of high-energy scattering at fixed impact parameter as that of one-dimensional (« space » variable: log k²) reaction-diffusion processes evolving in « time » Y

★ simple picture of high energy scattering, based on the parton model
★ connects the QCD problem to more general physics and mathematics
★ new results for QCD amplitudes!

QCD and statistical physics

Iancu, Mueller, Munier (2004)

We identified the <u>universality class</u> of high-energy scattering at fixed impact parameter as that of one-dimensional (« space » variable: log k²) reaction-diffusion processes evolving in « time » Y

simple picture of high energy scattering, based on the parton model
connects the QCD problem to more general physics and mathematics
new results for QCD amplitudes!

But: this identification is still a conjecture!

In particular, it is not completely clear that QCD may be reduced to a one-dimensional problem

A(Y, p, r)

Condition: each impact parameter evolves independently. *This talk: a numerical check of this statement*

Outline

* High energy QCD and one-dimensional stochastic processes

* Independence of different impact parameters in a toy model

rapidity in the frame of the observer

QCD and reaction-diffusion

$$\partial_{\bar{\alpha}Y}T = \chi(-\partial_{\ln k^2})T - T^2 + \alpha_s\sqrt{T}v$$

Similar to the sFKPP equation $\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}T} v$

Fisher; Kolmogorov, Petrovsky, Piscunov (1937)

QCD and reaction-diffusion

$$\partial_{\bar{\alpha}Y}T = \chi(-\partial_{\ln k^2})T - T^2 + \alpha_s\sqrt{T} v$$

Similar to the sFKPP equation $\partial_t T = \partial_x^2 T + T - T^2 + \sqrt{\frac{2}{N}}T v$

Fisher; Kolmogorov, Petrovsky, Piscunov (1937)

Predictions for QCD amplitudes

These formulas are independent of the precise form of the stochasticity and of the nonlinearity.

Independence of the different impact parameters?

The amplitudes at this and that impact parameters are independent as soon as $1/\langle Q_s(Y,b_1)\rangle, 1/\langle Q_s(Y,b_2)\rangle < d$

As soon as the distance between the probed impact parameters is larger than the relevant distance scale of the evolution (=the inverse saturation scale), the amplitudes measured at the two impact parameters should be independent.

Supported by (too) simple analytical estimates (fluctuations neglected...)

Outline

* High energy QCD and one-dimensional stochastic processes

* Independence of different impact parameters in a toy model

Toy model with impact-parameter dependence

Toy model with impact-parameter dependence

+ discretized sizes + saturation mechanism

We have 2 variables (r,b), and we keep the singularity structure of QCD

Traveling waves

One given impact parameter

N=25

Traveling waves

One given impact parameter

N=25

Traveling waves

Traveling wave velocity

 $V = \langle \rho_{\rm S}(Y + dY, b) - \rho_{\rm S}(Y, b) \rangle / dY$

Y

points at which $1/\langle Q_s(Y,b)\rangle = d$

Decorrelation happens where expected!

A more refined look

Comparison with a fixed impact-parameter version of the model

The toy model is defined by its interval splitting rate

$$dP = \frac{|r_0|}{|r||r_0 - r|} dr dY \qquad (+ \text{ saturation condition})$$

which generates a distribution of sizes and impact parameters of intervals.

One may *discard the impact parameter dependence* (this implies a rescaling of the splitting rate) and get a true *one-dimensional model* for which only the size matters.

A more refined look

Significant disagreement!

A more refined look

The disagreement seems to amount to a mere rescaling of N! (=rescaling of the QCD coupling)

Summary

We have identified, from the physics, the universality class of high energy QCD as the one of *one-dimensional* reaction-diffusion processes, whose dynamics are governed by an equation of the form

$$\partial_{\bar{\alpha}Y}T = \chi(-\partial_{\ln k^2})T - T^2 + \alpha_s\sqrt{T} v$$

We went back to the assumption that the QCD evolutions at different impact parameters decouple.

In a toy model, we have found that this is true.

However, a detailed comparison with a fixed-impact parameter version of the model shows some discreapancy, indicating that **the fixed-impact parameter model has more fluctuations**.