Diffraction at the LHC

Khoze, Martin, Ryskin

- 1. Multi-component model of σ_{tot} , $\frac{d\sigma_{el}}{dt}$, $\frac{d\sigma_{SD}}{dt dM^2} (pp \rightarrow pX)$...
- 2. Survival probability of rapidity gaps for exclusive processes $pp \rightarrow p+A+p$ at the LHC (A=Higgs,...) and at the Tevatron (A = $\gamma\gamma$, dijet, χ_c)
- 3. Early LHC runs to check exclusive predictions

Krakow Epiphany Conference, Jan. '09, in memory of Jan Kwiecinski

Alan Martin, IPPP, Durham

VOLUME 42, NUMBER 11

Parton distributions at small x

J. Kwiecinski,* A. D. Martin, and W. J. Stirling Department of Physics, University of Durham, DH1 3LE, England

R. G. Roberts Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, England (Received 24 July 1990)

EVIEW D

VOLUME 43, NUMBER 5

Semihard QCD expectations for proton-(anti)proton scattering at CERN, Fermilab Tevatron, and the Superconducting Super Collider

J. Kwiecinski* and A. D. Martin Department of Physics, University of Durham, DH1 3LE, England (Received 15 October 1990)

Model for "soft" high-energy interactions

needed to ---- understand asymptotics, intrinsic interest ---- describe "underlying" events at LHC ---- calc. rap.gap survival S² for exclusive prodⁿ

Model should:

1. be self-consistent theoretically --- satisfy unitarity

→ importance of absorptive corrections
 → importance of multi-Pomeron interactions

2. agree with available soft data CERN-ISR to Tevatron range σ_{tot}

tot,
$$\frac{d\sigma_{\rm el}}{dt}$$
, $\frac{d\sigma_{\rm SD}}{dt dM^2}(pp \to pX)$

3. include Pomeron comp^{ts} of different size---to study effects of soft-hard factⁿ breaking

→ multi-component s- and t-channel model of "soft" processes

diagonal in b $SS^{\dagger} = I$ with $S = I + iT \rightarrow T - T^{\dagger} = iT^{\dagger}T$ elastic unitarity \rightarrow 2 Im $T_{el}(s,b) = |T_{el}(s,b)|^2 + G_{inel}(s,b)$ $\begin{cases} \frac{d^2 G_{tot}}{d^2 b} = 2 \operatorname{Im} T_{el} = 2 \left(1 - e^{-\Omega/2} \right) \\ \frac{d G_{el}}{d^2 b} = |T_{el}|^2 = \left(1 - e^{-\Omega/2} \right)^2 \\ \frac{d G_{inel}}{d^2 b} = 2 \operatorname{Im} T_{el} - |T_{el}|^2 = 1 - \left(e^{-\Omega} \right)^2 \end{cases}$ Opacity/Eikonal _2(5,b) > 0 e.g. black disc Im $T_{el} = 1$, b < R $G_{tot} = 2\pi R^2$ $G_{tot} = 2\pi R^2$ $e^{-\Omega}$ is the probability of no inelastic interaction

Elastic amp.
$$T_{el}(s,b)$$
bare amp. $\Omega =$ $T_{el} = \mathbf{1} = 1 - e^{-\Omega/2} = \sum_{n=1}^{\infty} \mathbf{1} \cdots \mathbf{\Omega}$ (-20%)Low-mass diffractive dissociation p^*

introduce diff^{ve} estates ϕ_i , ϕ_k (comb^{ns} of p,p^{*},..) which only undergo "elastic" scattering (Good-Walker)

$$T_{ik} = \prod_{k=1}^{i} = 1 - e^{-\Omega_{ik}/2} = \sum \prod_{k=1}^{i} \dots \Omega_{ik}$$
 (-40%)

include high-mass diffractive dissociation

(SD -80%)

$$\Omega_{ik} = \prod_{k=1}^{i} + \prod_{k=1}^{i} M + \prod_{k=1}^{i} + \cdots + \prod_{k=1}^{i} + \cdots$$

triple-Regge analysis of $d\sigma/dtd\xi$, including screening

(includes compilation of SD data by Goulianos and Montanha)

 $g_{3P} = \lambda g_N \quad \lambda \sim 0.2 \quad \leftarrow \text{ large } ?$

so at collider energies $\sigma_{SD} \sim \sigma_{el}$

New analysis of soft data

KMR 2008

$$\sigma_{\rm tot}, \ \frac{d\sigma_{\rm el}}{dt}, \ \sigma_{\rm SD}(\text{low } M), \ \frac{d\sigma_{\rm SD}}{dt dM^2}$$

model:

 \bigcirc

 3-channel eikonal, ϕ_i with i=1,3

attempt to mimic BFKL diffusion in \bigcirc log q_t by including three components to approximate q_t distribution – possibility of seeing "soft \rightarrow hard" Pomeron transition

Include absorption – full set of multi-Pomeron diagrams

by iteration

evolve up from y=0

$$\begin{cases}
\frac{d\Omega_{ck}(y)}{dy} = (\Delta + \alpha' \nabla_b^2) \Omega_{ck}(y) e^{-\lambda \Omega_{ck}(y)/2} e^{-\lambda \Omega_{ic}(y')/2} \\
\frac{d\Omega_{ic}(y')}{dy'} = (\Delta + \alpha' \nabla_b^2) \Omega_{ic}(y') e^{-\lambda \Omega_{ic}(y')/2} e^{-\lambda \Omega_{ck}(y)/2} \\
\text{or evolve down from y'=Y-y=0} solve for \Omega_{ik}(y,b)
\end{cases}$$

Parameters

multi-Pomeron coupling λ from $\xi d\sigma_{SD}/d\xi dt$ data ($\xi \sim 0.01$)

diffractive eigenstates from $\sigma_{SD}(\text{low M})=2\text{mb}$ at sqrt(s)=31 GeV, -- equi-spread in R², and t dep. from $d\sigma_{el}/dt$

Results All soft data well described $g_{3P}=\lambda g_N$ with $\lambda=0.25$ (compared to $\lambda=0.2$ in Luna et al.)

 Δ_{Pi} = 0.3 (close to the BFKL NLL resummed value) α'_{P1} = 0.05 GeV⁻²

These values of the bare Pomeron trajectory yield, after screening, the expected soft Pomeron behaviour --- "soft-hard" matching (since P_1 heavily screened,..., P_3 ~bare)

 $\Delta_{R} = -0.4$ (as expected for secondary Reggeon) $\Delta = \alpha(0) - 1$

Description of CDF dissociation data

Advantages of $pp \rightarrow p + (H \rightarrow bb) + p$ for Higgs studies at the LHC

- accurate determination of M_H using tagged protons, M_H=M_{missing}
- -- $M_H = M_{decay}$ must match $M_H = M_{missing}$

- -- bb_{bar} QCD background suppressed by $J_z=0$ selection rule
- -- can determine J^{PC}. Selection rule favours 0⁺⁺ production
- -- S/B ~ O(1) for SM 120 GeV Higgs (...but σ ~ few fb)
- -- $\sigma \ge 10$ for some SUSY Higgs scenarios e.g. $M_A > 140$ GeV: then $h \rightarrow h_{SM}$ H, A decouple from gauge bosons H, A \rightarrow bb_{bar}, $\tau\tau$ enhanced by tan β

Kaidalov+KMR Heinemeyer,Khoze et al Cox,Loebinger,Pilkington

bb background to $pp \rightarrow p + (H \rightarrow bb) + p$ signal:

- -- irreducible QCD $gg^{PP} \rightarrow bb$ events
- -- gluons mimicing b jets
- -- $J_z=2$ contribution

New result:

NLO calculation of $gg^{PP} \rightarrow bb$ reduces irreducible background by factor of 2 or more Shuvaev+KMR

(also recent experimental improvements in reducing the chance that gluons mimic b jets) Price to pay for an exclusive process...

Survival probability of rapidity gaps for $pp \rightarrow p+A+p$??

$$\sigma \sim S^2 \left| \int f_g \mathcal{M}(gg \rightarrow A) f_g \frac{dQ^2}{Q^2} \right|^2$$

Start with
$$S_{eik} \rightarrow$$

Calculation of S^{2}_{eik} for pp \rightarrow p + H +p

 $\overline{S^2}_{eik} \sim 0.02$ for 120 GeV Higgs at the LHC

consensus

"Enhanced" absorptive effects

(breaks soft-hard factorization)

rescattering on an intermediate parton:

BBKM \rightarrow large effect? KMR \rightarrow HO diagrams \rightarrow sum \rightarrow small effect

The new soft analysis, with Pomeron q_t structure, enables S^2_{enh} to be calculated

Survival prob. for pp \rightarrow p+H+p

However enh. abs. changes p_t behaviour from exp form, so

$$<\!S^{2}\!>_{tot}<\!p_{t}^{2}\!>^{2} = \left\{ \begin{array}{l} 0.0015 \quad LHC \\ 0.0030 \quad Tevatron \end{array} \right\} \quad KMR \; 2000 \quad (no \; S_{enh}) \\ 0.0010 \quad LHC \\ 0.0025 \quad Tevatron \end{array} \right\} \quad KMR \; 2008 \quad (with \; S_{enh})$$

CDF exclusive measurements ($\gamma\gamma$, dijet, χ) indicate that the above may be conservative lower limits

Experimental checks of calculation of $\sigma(pp \rightarrow p + A + p)$

KMR cross section predictions are consistent with the recent observed rates of three exclusive processes at the Tevatron: CDF

 $pp_{bar} \rightarrow p + \gamma \gamma + p_{bar}$ $pp_{bar} \rightarrow p + dijet + p_{bar}$ $pp_{bar} \rightarrow p + \chi_c + p_{bar} \qquad (68 \quad \chi_c^{\ 0} \rightarrow J/\psi + \gamma \text{ events})$ For the lighter χ_c system the enhanced suppression is 0.35

 \rightarrow which takes KMRS prediction from above to below CDF rate

Early LHC runs can give detailed checks of all of the ingredients of the calculation of $\sigma(pp \rightarrow p + A + p)$, even without proton taggers

3 events observed (one due to $\pi^0 \rightarrow \gamma \gamma$)

 $\sigma(\text{excl }\gamma\gamma)_{\text{measured}} \sim 0.09 \text{pb}$

 $\sigma(\text{excl }\gamma\gamma)_{\text{predicted}} \sim 0.04\text{pb}$

Band (1718) For Hill? Band Spr DATA 10g and S.B. S.P. 1213 Free S.B. S. 1

 $\sigma(\gamma\gamma) = 10 \text{ fb}$ for E_T^{γ}>14 GeV at LHC Early LHC checks of theoretical formalism for $pp \rightarrow p + A + p$?

$$\sigma ~\sim~ S^2 \left| \int \frac{dQ_t^2}{Q_t^4} f_g f_g \right|^2$$

Possible checks of:

(i) survival factor S ² :	W+gaps, Z+gaps
(ii) generalised gluon f _g :	γp →Yp
(iii) Sudakov factor T :	3 central jets
(iv) soft-hard factorisation	#(A+gap) evts
(broken by enhanced	#(inclusive A) evts
absorptive effects)	with $A = W$, dijet, Y

$$\eta_W = 2.3(-2.3) \implies \xi \sim 0.1(0.001)$$

S² large, as large b_t (small opacity)

W+gaps has S² large, as large b_t for γ exch (small opacity)

Z+gaps has b_t more like excl. Higgs

 σ ~0.2pb for $\Delta \eta_i$ >3 and $E_T(b)$ >50GeV but to avoid QCD bb backgd use Z \rightarrow I⁺I⁻

Bzdak, Motyka, Szymanowski, Cudell

If $|y_Y| < 2.5$, then sample $f_g(x_1, x_2)$ with x_i in (10⁻⁴, 10⁻²)

3-jet events as probe of Sudakov factor T

T is prob. not to emit additional gluons in gaps: $pp \rightarrow p + A + p$ T=exp(-n), where n is the mean # gluons emitted in gap

3 central jets →allow check of additional gluon emission System A must be colourless – so optimum choice is emission of third jet in high E_T dijet production

$$R_j = 2E_T (\cosh \eta^*)/M_A$$

$$M_A = \sqrt{s \ \xi^+ \xi^-}$$

$$\eta^* = \eta - y_A$$

only highest E_T jet used – stable to hadronization, final parton radiation...

"Enhanced" absorptive effects

(break soft-hard factorization)

rescattering on an intermediate parton:

 $BBKM \rightarrow large$

 $\mathsf{KMR} \rightarrow \mathsf{HO} \text{ diagrams} \rightarrow \mathsf{sum} \rightarrow \mathsf{small}$

can LHC probe this effect ?

rough estimates of enhanced absorption S²_{en}

Conclusions – soft processes at the LHC

-- screening/unitarity/absorptive corrections are vital -- Triple-Regge analysis with screening $\rightarrow g_{3P}$ increased by ~3 \rightarrow importance of multi-Pomeron diagrams -- Latest analysis of all available "soft" data: multi-ch eikonal + multi-Regge + compts of Pom. to mimic BFKL (showed some LHC predictions $\sigma_{total} \sim 90$ mb) soft-hard Pomeron transition emerges "soft" compt. --- heavily screened --- little growth with s "intermediate" compt. --- some screening "hard" compt. --- little screening --- large growth (~pQCD) -- LHC can explore multigap events \rightarrow probe multi-Pomeron

SD DPE

LHC is a powerful probe of models of soft processes

structure

Conclusions – exclusive processes at the LHC

soft analysis allows rapidity gap survival factors to be calculated for any hard diffractive process

Exclusive central diffractive production, $pp \rightarrow p+H+p$, at LHC has great advantages, S/B~O(1), but σ ~ few fb for SM Higgs. However, some SUSY-Higgs have signal enhanced by 10 or more. **Very exciting possibility, if proton taggers installed at 420 m**

Formalism consistent with CDF data for $pp(bar) \rightarrow p + A + p(bar)$ with A = dijet and A = $\gamma\gamma$ and A = χ_c More checks with higher M_A valuable.

Processes which can probe all features of the formalism used to calculate $\sigma(pp \rightarrow p+A+p)$, may be observed in the early LHC runs, even without proton taggers