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Motivation

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

strong coupling (semi-)classical strings
nonperturbative physics or supergravity

very difficult ‘easy’
weak coupling highly quantum regime

‘easy’ very difficult

New ways of looking at nonperturbative gauge theory physics
but very difficult to test...

Goal:
Interpolate from strong to weak coupling to reach per-
turbative results staying on the string theory side of the
correspondence
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What is N = 4 Super Yang-Mills

N = 4 SYM consists of
1 gluons (ordinary Yang-Mills) + specific matter content:
2 4 fermions in the adjoint representation
3 6 scalars in the adjoint representation
4 appropriate interactions (Yukawa+quartic)

The theory is exactly conformal (scale invariant) even on the quantum level

In this theory one can perform quite rigorous computations at strong coupling
using the AdS/CFT correspondence

N = 4 SYM may be the ‘harmonic oscillator’ of four dimensional gauge
theories – D. Gross

Use N = 4 SYM as a theoretical laboratory for studying nonperturbative
(and perturbative) gauge theory physics

It may become quite close to QCD for nonzero temperature. . . (not this talk)
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Anomalous dimensions

Since N = 4 SYM is exactly conformal anomalous dimensions may be
defined simply through two-point correlation functions

〈O(x)O(y)〉 =
const

|x − y |2∆

The dimension ∆ depends in a nontrivial way on the coupling g 2 = λ/16π2

where λ ≡ g 2
YMNc is kept fixed in the limit Nc →∞

When computing anomalous dimensions from two point functions there are
two types of graphs:

and

The first class is contained in the so-called Asymptotic Bethe Ansatz of
Beisert and Staudacher

The second class are ‘wrapping interactions’ which start to appear at order
g 2L (these are not contained in the Asymptotic Bethe Ansatz)
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The Konishi operator

Simplest operator which is not protected by supersymmetry — the Konishi
operator

tr Φ2
i ←→ tr Z 2X 2 + . . . ←→ tr ZD2Z + . . .

Its anomalous dimension should be given by the ABA exactly up to 3 loops:

EBethe = 4 + 12g 2 − 48g 4 + 336g 6 − (2820 + 288ζ(3))g 8 + . . .

The true result is
E = EBethe + ∆wrapping E

with ∆wrapping E appearing first at 4 loops

Recently a 4-loop perturbative computation was completed by F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon

State of the art computation using supergraphs but still very complicated!!!
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Perturbative 4-loop result for the Konishi

The final result for the anomalous dimension of the Konishi operator is

∆ = 4 + 12g 2 − 48g 4 + 336g 6 + (−2496 + 576ζ(3)− 1440ζ(5)) g 8︸ ︷︷ ︸
[F .Fiamberti,A.Santambrogio,C .Sieg ,D.Zanon]

+ . . .

(−2584 −→ −2496 after the appearance of our paper)

The wrapping part is thus

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Later this result was confirmed by an independent perturbative gauge theory
computation using ordinary Feynman graphs by V. Velizhanin (total number
of four loop diagrams: 131015)

Transcendental numbers start to appear...

ζ(3) was expected to appear, but ζ(5) was initially a surprise
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Our goal:

Compute the same 4-loop
anomalous dimension from
string theory
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How to describe strings in AdS5 × S5?

Consider a closed string in AdS5 × S5:

The embedding coordinates of the point (τ, σ) are quantum fields Xµ(τ, σ)
on the worldsheet which has the geometry of a cylinder

String theory in AdS5 × S5 ≡ a specific two dimensional quantum field theory
defined on a cylinder (worldsheet QFT)

It turns out that this worldsheet QFT is integrable
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Anomalous dimensions from strings in AdS5 × S5

Anomalous dimensions correspond to energies of string states in AdS5 × S5

Energies of string states are just energy levels of the two dimensional
worldsheet QFT

The Konishi operator has the same anomalous dimension as
tr ZXZX − tr Z 2X 2

We have to identify the corresponding string state. . .

number of X ’s ≡ number of particles on the string worldsheet

number of Z ’s ≡ size of the cylinder

We have to compute the energy of a two particle state on a cylinder of size
J = 2
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Answer:

Leading part is identical to the Asymptotic Bethe Ansatz

On top of this there are virtual corrections (Lüscher corrections generalized to
multiparticle states) — these correspond to wrapping interactions/graphs

These may be summarized by a single graph contributing to the desired order
(O
(
g 8
)
):

∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)
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multiparticle states) — these correspond to wrapping interactions/graphs

These may be summarized by a single graph contributing to the desired order
(O
(
g 8
)
):

∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

Romuald A. Janik (Krakow) Perturbative gauge theory from strings 18 / 24



Answer:

Leading part is identical to the Asymptotic Bethe Ansatz

On top of this there are virtual corrections (Lüscher corrections generalized to
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∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

We have (
z−

z+

)2

=
16g 4

(Q2 + q2)2
+ . . .

The scalar part gives

S
scalar ,sl(2)
Q−1 =

3q2 − 6iQq + 6iq − 3Q2 + 6Q − 4

3q2 + 6iQq − 6iq − 3Q2 + 6Q − 4
·

16

9q4 + 6(3Q(Q + 2) + 2)q2 + (3Q(Q + 2) + 4)2

The matrix part (summed over b) evaluates to

S
matrix,sl(2)
Q−1 =

5184Q2(3q2 + 3Q2 − 4)2g 4

(q2 + Q2)2((3q − 3iQ + 3i)2 − 3)2

We are left with an integral over q and a summation over Q
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The integral over q can be carried out analytically by residues

The result is

∞∑
Q=1

{
− num(Q)

(9Q4 − 3Q2 + 1)4 (27Q6 − 27Q4 + 36Q2 + 16)
+

864

Q3
− 1440

Q5

}

where

num(Q) =7776Q(19683Q18 − 78732Q16 + 150903Q14 − 134865Q12+

+ 1458Q10 + 48357Q8 − 13311Q6 − 1053Q4 + 369Q2 − 10)

Two last terms give at once 864 ζ(3)− 1440 ζ(5)

The remaining rational function remarkably sums up to an integer giving
finally

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon]
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Twist two operators

The Konishi operator is just the lowest (spin 2) twist two operator

General twist two operators are formed from two scalars and M light-cone
derivatives

Generalization:

Compute wrapping corrections for twist two
operators with any M from string theory
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Answer:

γwrapping
8 (M) = −640S2

1 (M)ζ(5)− 512S2
1 (M)S−2(M)ζ(3) + C7(M)

where

C7(M) = 256S2
1 (−S5 + S−5 + 2S4,1 − 2S3,−2 + 2S−2,−3 − 4S−2,−2,1)

This cures a disagreement between the Alebraic Bethe Ansatz result and LO and
NLO BFKL expectations!
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LO and NLO BFKL give a prediction for γ8(M) analytically continued to
M = −1 + ω

γ8(ω) ∼ −256

(
4ζ(3)

ω4
+

5
4ζ(4)

ω3
+O

(
1

ω2

))

The Algebraic Bethe Ansatz contribution gave [Kotikov, Lipatov, Rej,

Staudacher, Velizhanin]

γBethe
8 (ω) ∼ 256

(
−2

ω7
+

0

ω6
+

8ζ(2)

ω5
− 13ζ(3)

ω4
− 16ζ(4)

ω3
+O

(
1

ω2

))
Our wrapping result is

γwrapping
8 (ω) ∼ 256

(
2

ω7
+

0

ω6
− 8ζ(2)

ω5
+

9ζ(3)

ω4
+

59ζ(4)

4ω3
+O

(
1

ω2

))
which when added to γBethe

8 (ω) exactly agrees with LO and NLO BFKL!
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Conclusions

The agreement of the Konishi computation with the 4-loop weak coupling
perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The computation of the finite size effects through Lüscher corrections is of a
distinctly (2D) quantum field theoretical nature – so string theory is essential
here

The result came from a single diagram – in contrast to direct perturbative
computations in gauge theory which are much more complex

This suggests that one can use string theory methods of AdS/CFT as an
efficient calculational tool also at weak coupling

The calculations have been extended to general twist two operators at four
loops (no complete gauge theory computation so far!) [Bajnok,RJ, Lukowski]

For twist two operators the wrapping corrections extracted from string theory
completely cure the problem of disagreement with LO and NLO BFKL
expectations
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