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Outline of talk

    Bloom-Gilman duality in DIS

Angular distribution of muon pairs in Drell-Yan

Large single spin asymmetries

Higher twist contributions are suppressed by 1/Q2(1–x) 

⇒ Consider QCD factorization in a new limit: Q2 → ∞ with Q2(1–xF) fixed

The hard subprocess is coherent with the entire projectile Fock state
Soft matrix element is a forward multi-parton distribution:

2

, ...p↑p→ π + X

π−N → µ+µ−X

Hard inclusive processes have interesting features at high x (xB , xF)

0 y1 y2 y3

u ud d

x+xB x´+xBx x´

MPDN(p) N(p)

+y3

eN → eN∗



Paul Hoyer Krakow January 6, 2009

3Coherence between hard and soft partons as x → 1

Example: DIS in the “target rest frame”
                 (Light-Cone gauge)

γ∗ → q(z) + q̄(1− z)

2ν(1− z) ∼ ΛQCD

Soft (re)scattering of antiquark in target
releases virtual                       fluctuation

q
q+ ≈ 2ν k+≈ 2ν 1

k   ≈ ΛQCD ⊥

q
_

γ∗(Q2)→ qq̄

Possible, since
the life-time of the antiquark is 
similar to that of the virtual photon

Lesson: Partons which take nearly all the momentum,  x ~ 1
              can be coherent with the soft partons,  1 – x ~ 0

γ∗(Q2)

x+
q̄ ∼ 1/k−2

k2 finite

x+
γ∗ ∼ 2ν/Q2 = 1/mxB

~ finite

Landshoff, Polkinghorne 
and Short (1971)

x± = x0 ± x3
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Bloom – Gilman duality

Q2 ~ 1.5 GeV2 F2

Q2 ≈ 4.5

ξ≈xB

Q2 ≈ 0.5

Jlab Hall C

Jlab Hall C

S. Alekhin, PRD 68 (2003) 014002

NNLO

Smooth curves: Scaling F2 at large Q2 and fixed xB                              Bj limit 

Peaks: Δ and S11 contributions for increasing Q2 and fixed (1-xB) Q2  BB limit

Duality shows that the Bj and BB limits are simultaneously valid
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E615: π−N → µ+µ− + X

plab = 263 GeV/c,  Q > 4 GeV

dσ

d cos θ∗
∝ 1 + α cos2 θ∗

5

α

→ sin2 θ∗ as xF → 1

⇒ colliding quark(s) are far off-shell:
      new subprocess

K. J. Anderson, et al, 
PRL 43 (1979) 1219

Photon polarization in Drell-Yan at high xF

Berger and Brodsky, 
PRL 42 (1979) 940

How does the hard subprocess 
factorize from the soft matrix 
element?
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Drell-Yan in the Bj limit: Q2 → ∞  at fixed x

x1

x2

q̄
q

π

N

γ∗T

Q2 = x1x2s→∞
x1, x2 ; xF = x1 – x2      fixed
Transversely polarized photon,
       since quarks are ~ on-shell

Leading twist: One active parton in beam and target hadrons

σ = fq̄/π(x1)fq/N (x2)σ̂(q̄q → γ∗)Factorization:

1
Q2

1
1− x

Higher twist corrections are of order 

Spectators are incoherent with the hard subprocess

6

Q2
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π

q
N

q̄

q

xF → 1

k–(1–xF) fixed
k

p

Stopped parton coherent with γ∗

γ∗L : Longitudinal polarization

q, g virtualities of order Q2

⇒  higher twist process
g

_

The hadronic mass

fixedM2
X ≡ (k + p− q)2 # (1− xB)[s(1− xF ) + m2

N ]

Drell-Yan in the BB limit:   Q2 → ∞ at fixed Q2(1–xF)

xB ≡
q+

p+
=

Q2

2q · p
=

Q2

s
fixed

q

Stopped quark is comoving with the target.
Its interactions in the target affect the hard subprocess.

z

1–z
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Analogy to DIS: “Target rest frame” vs. Handbag

N

γ∗

q̄

q

N

γ∗ q

q

γ∗ → qq̄ γ∗q → q
Eq

Eγ∗
→ 1

Eq̄ ∼ ΛQCD

DIS viewed as photon splitting: 
The antiquark is comoving with the target.     
Its scattering in the target determines DIS σ

DIS viewed as photon scattering: 
The DIS cross section determined by the 
“probability of finding the quark in the target”

In either case, the large photon virtuality Q2 arises from the difference in 
longitudinal momenta of the quarks, not from their transverse momentum 

Q2 Q2
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k1 = (0+, zk– , k⊥)
k2 = (0+, (1–z)k– , -k⊥)

l2+– l1+ = q+ = xB p+

Since q12 ≈ – zk– l1+ → ∞
the pion wave function contributes
through its distribution amplitude φ

Also q22 , q1– , q2– → ∞ , hence
the space-time separation of the 
target interaction points y1, y3 is

For each final state X the target
matrix element is given by a GPD
with skewness

π

N

k

p

γ∗Ll1+ l2+

k1

k2

GPD X
p´

q1

q2 q

u d

+ φ y1

y3

y2

|y1⊥ − y3⊥| = O (1/Q)
|y+

1 − y+
3 | = O

(
1/Q2

)

|y−1 − y−3 | = O
(
1/!+1

)

Hence the stopped quark should
be connected to the target:

Using perturbative propagators for the gluon q1 
and d-quark q2 and adding three more diagrams we get

→ 0
→ 0

finite
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z = k1–/k–

xB = q+/p+

x1 = l1+/p+

T (π+N → γ∗LX) =
−ieg2 CF

2πQ
√

2Nc

∫
dx1C(xB , x1)

×
∫

dy−1 e−iy−1 x1p+/2〈X(p′)|ψ̄u(y1)γ+γ5 ψd(0)|p〉y+
1 =y1⊥=0

π

N

k

p

γ∗L

x1

k1

k2

GPD X
p´

q

u d

+ φ

xB +x1

H

where C(xB , x1) =
∫

dz φπ(z)
(

ed

z

1
x1 − iε

+
eu

1− z

1
xB + x1 + iε

)

For X = p we recognize the time-
reversed amplitude for deeply virtual 
pion production, γ* + p → π+  + n

For X ≠ p  we have a 
“transition” GPD

Before summing over all X, consider 
photon helicity (same for each X)

L.L. Frankfurt et al, 
PRD 60 (1999) 014010
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The photon helicity 

Intuitively: In the BB limit of π+ N → γ* + X the photon carries the helicity 
of the pion (λ = 0), since the process is coherent on the pion wave function

But: In p N → γ* + X  the photon helicity differs from the proton helicity by 
|Δλ| ≥ 1/2, whether it is longitudinal or transverse. What is then the photon 
polarization?

Helicity systematics in the BB limit is a consequence of the low transverse 
momenta, q⊥  ~ ΛQCD  and the conservation of  Jz = Lz + Sz  

Each unit of Lz brings a suppression q⊥/Q ~  ΛQCD/Q

⇒ Leading contribution obtained by setting all Lz = 0 (when possible)
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Up to terms ~ mq /Q  the helicity of the quark line is conserved:

Contribution to Sz (⇒ or ⇐)determined by direction of motion (±), 
giving Sz = 0 of the photon in π+ N → γ* + X.

Conservation of Sz

k

!*

"+
u(–)

d(–)
_

#
"

(–)
u(+)

(–)

(–)

(–)

d(+)(+)

L

g(–)

In p N → γ* + X one analogously finds
that the photon is transversally polarized.

Consistent with pN DY data
(J. C. Peng, private comm.)
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α

K. J. Anderson, et al, 
PRL 43 (1979) 1219

Exclusive → Inclusive

The dominance of longitudinal
photons is known for exclusive
meson production,
 γ* + p → π+ + n

The change of polarization in 
inclusive DY occurs for
sizeable missing mass

 π + N → γ* + X

Next we sum over X to obtain
the inclusive DY cross section

MX  ≈ 7 GeV 
for xF = 0.9



Paul Hoyer Krakow January 6, 2009

14

σ(π+N → γ∗LX) =
1
2s

∑

X

∫
dq−d2q⊥
(2π)32q−

|T (π+N → γ∗LX)|2(2π)4δ4(k + p− q − p′)

The π+ N → γ* + X cross section 

∑

X

|X〉〈X| ≡
∞∑

n=0

∫ n∏

i=1

d3pi

(2π)32Ei
|p1, . . . ,pn〉〈p1, . . . ,pn| = 1

The completeness sum over X includes summing over pX ≡ p´

and must not be constrained by the momentum conserving  δ-functions.

Integrating the DY cross section over q⊥  = – p´⊥  
eliminates the transverse momentum constraint on p´.
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〈N(p)|ψ̄d(0)γ+γ5 ψu(y2)|X(p′)〉 2(2π)2δ(p+ − q+ − p′
+)δ(k− + p− − q− − p′

−)

= 1
2

∫
dy+

3 dy−3 〈N(p)|ψ̄d(y3)γ+γ5 ψu(y2 + y3)|X(p′)〉 exp [iy3 · (k − q)]

The longitudinal δ-functions can be incorporated into the GPD matrix element
via two position integrals:

After ΣX the inclusive cross is given by a forward multiparton distribution 
depending on the fractional `+´  momenta

xB = q+/p+, x = l+1 /p+, x′ = l′1
+
/p+

and the fractional `–´  momentum xM transferred to the inclusive system

xM = k−(1− xF )/p− xB + q2
⊥/m2

N

1− xB
≤ xM ≤ ∞

which is conjugate to y3+ . At fixed xF we would have xM → ∞ and y3+ → 0.
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fdū/p(xB , xM ;x, x′) =

=
1

4(4π)3

∫
dy−1 dy−2 dy−3 dy+

3 exp
{

1
2 i

[
−y−1 l+1 + y−2 l+1

′ − y−3 q+ + y+
3 xMp−

]}

×〈N(p)|ψ̄d(y3)γ+γ5 ψu(y2 + y3) ψ̄u(y1)γ+γ5 ψd(0)|N(p)〉yi⊥=0; y+
1 =y+

2 =0

0 y1 y2 y3

u ud d

x+xB x´+xBx x´

MPDN(p) N(p)

+y3

The `–´  momentum fraction xM determines the inclusive mass,

M2
X = m2

N (1− xB)(1 + xM )− q2
⊥

The MultiParton Distribution 
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The π+ N → γ* + X cross section in the BB limit

dσ(π+N → γ∗
LX)

dM2
X

=
2(eg2CF )2

Q2s2(1− xB)Nc

×
∫

dx dx′ C(xB , x)C∗(xB , x′) fdū/p(xB , xM ;x, x′)

where C(xB , x) ≡
∫ 1

0
dz φπ(z)

(
eu

1− z

1
xB + x + iε

+
ed

z

1
x− iε

)

The dependence on xM (i.e., y3+ ≠ 0) distinguishes
from the higher twist multiparton distributions considered by Jaffe 

fdū/p(xB , xM ;x, x′)

R. L. Jaffe, Nucl. Phys. B229 (1983) 205
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With yi+ = 0 all (anti)commutators vanish on the light-front.

Conversely, in                                     there can be contractions which in the
xM → ∞, y3+ → 0 limit corresponds to the quark in the pion with large 
xM p– = (1–xF)k– forming a separate jet in the final system X.

fdū/p(xB , xM ;x, x′)

R. L. Jaffe, Nucl. Phys. B229 (1983) 205
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k
1

k

qk
2

q
2

q
1

p
X

!*

"+

N
p´

y
2

y
1

y
3

A B

u

d
_

l
1

l
2

GPD

#
"

k
1

k

qk
2

q
2

q
1

p
X

!*

"+

N
p´

y
2

y
1

y
3

B

u

d
_

l
1

l
2

PD

#
"

l1– → ∞
     ⇒

fdū/p → δ(l+1 − l′1
+)

l+1
4π

θ(l+1 )fd/p(l+2 /p+)

In the y3+ → 0 limit the u-quark propagator becomes LF dominated, reducing 
the GPD to the standard d-quark PDF: 

dσ(π+N → γ∗LX)
dM2

X

=
(eedg2CF )2

Q2s2(1− xB)Nc

∫
dl+1
2πl+1

θ(l+1 )
(∫

dz

z
φπ(z)

)2

fd/p(l+2 /p+)

The DY cross section then becomes Berger and Brodsky, 
PRL 42 (1979) 940
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In the Bjorken limit:   AN ~ αs mq/pT

AN ~ 0.001 for pT ~ 2 GeV/c

SSA requires helicity flip and 
a dynamical phase in a 
subprocess which is coherent 
with the high k⊥ parton

p↑p → π(xF, kT) + X

Kane, Pumplin and Repko  
PRL 41 (1978) 1689

Transverse Single-Spin Asymmetries (AN)
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E704

p↑p  → π +X

k⊥ > 0.7 GeV

π+

π–

π0

SSA in p↑p  → π(xF, k⊥) +X

C. Bourrely and 
J. Soffer, Eur. 
Phys. J. C 36 
(2004) 371

•    AN ≈ 0.4 at xF = 0.8
      Almost all beam momentum and spin is transferred to π, 
      suggesting coherence over entire p↑ Fock state even at high k⊥ 

•   AN generated at twist 3 or via 
    Sivers effect obeys  AN ∝ 1/k⊥ 
    which contradicts data.

•    Leading twist analysis 
     underestimates the p↑p  → π +X 
     cross section at high xF

xF = xq/p zπ/q

0.8 = 0.9 ⋅ 0.9
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STAR Collaboration 
PRL.101:222001,2008
arXiv:0801.2990
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π0(xF,pT)

N

q

pT
flip

Imaginary
parts

Tentative scheme for generating an SSA through helicity flip 
in a soft process which is coherent with the large pT scattering 

(1–xF) pT2 fixedpT → ∞ with

If successful, would indicate that soft processes where a quark loses
most of its momentum may influence hard scattering in, e.g., form factors.
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Data reveals qualitatively new features of scattering at high x

Longitudinal photons in πN Drell-Yan
Large single spin asymmetries
Bloom-Gilman duality

This suggests to consider hard processes at fixed Q2(1-x)   “BB” limit
Hard subprocess coherent with entire wave function of projectile
Approaching exclusive processes from better understood region

DY cross section factorized in terms of a forward multi-parton distribution
Finite LF time difference y3+ between T and T*

Application to SSA in                              under consideration.

Possibly relevant also for an understanding of Bloom-Gilman duality
and the dynamics of exclusive form factors.

p↑p→ π + X


