Introduction Minimum bias and Underlying event Eikonal formalism and Dipole cascades,

Multiple Interactions, Saturation, and Final States in *pp* Collisions and DIS

Gösta Gustafson

Lund Univ. and Hamburg Univ.

Epiphany 2009, Krakow 5-7 Jan. Dedicated to the memory of Jan Kwieciński

Work done with Emil Avsar, Christoffer Flensburg, and Leif Lönnblad Introduction Minimum bias and Underlying event Eikonal formalism and Dipole cascades,

Outline

Introduction

Minimum bias and Underlying event

Eikonal formalism and Dipole cascades

Introduction

- ► Minijet cross section >> σ_{tot} in high energy pp collisions ⇒ Multiple subcollisions important feature
- Formulation in transverse coordinate space and eikonal approximation suitable for saturation and mult. coll.
- Successfully applied to $\gamma^* p$ collisions: total and diffr. scatt.
- Final states: Best model PYTHIA. Extensive tunes to CDF data (R. Field)
- Problems:
 - How to hadronize? Fit to data needs color reconnections.
 - Correlations and fluctuations difficult in momentum space cascades
- New approach based on Mueller's dipole cascade

Minimum bias and Underlying event

Inclusive parton scattering cross section diverges like $d\hat{\sigma}/dp_{\perp}^2 \approx 1/p_{\perp}^4$ for $p_{\perp} \rightarrow 0$.

Direct observation:

Four-jet events with pairwise back-to-back jets: AFS (ISR), UA2(S $p\bar{p}$ S collider), CDF(Tevatron)

CDF 3-jet + prompt photon analysis

Yellow region = double parton scattering (DPS)

The rest = PYTHIA showers

Early suggestion:

Increasing cross setion driven by minijets. Minimum bias events dominated by (semi)hard parton subcollisions.

Assumption behind the PYTHIA model (T. Sjöstrand - M. van Zijl - P. Skands)

Cutoff needed for small p_{\perp}

Hadrons are color neutral \Rightarrow Coulomb potential screened for large impact parameters or small p_{\perp} .

Fits to data \Rightarrow cutoff \approx 2 GeV.

(Similar cutoff obtained in k_{\perp} -factorization formalism.)

LU.HU

Typically 2 - 3 interactions/event at the Tevatron, 4 - 5 at the LHC

However: Subcollisions are correlated.

Central collsions have many interactions

Peripheral collisions have few interactions

 $\sigma_{\text{DPS}} = \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \quad \text{for } A \neq B \implies \sigma_{\text{eff}} \approx 14.5 \text{ mb}$

Introduction Minimum bias and Underlying event Eikonal formalism and Dipole cascades,

MI, saturation and final states

Gösta Gustafson

LU,HU

Minimum bias and Underlying event

Questions:

Hadronization of many-parton system. Fit needs maximum color reconnection

MI, saturation and final states

Gösta Gustafson

Eikonal formalism

Transverse coordinate space suitable for rescattering and multple collisions

Convolution in $\textbf{k}_{\perp}\text{-space} \rightarrow \text{Product}$ in b-space

$$\begin{split} S(b) &= S_1(b)S_2(b)S_3(b) \\ S_i &= e^{-\eta_i(b)} \Rightarrow S = e^{-\sum \eta_i} \end{split}$$

Weizsäcker-Williams: Method of virtual quanta

 $\mathbf{E}_{\perp} \sim g \frac{\mathbf{r}}{r^2}$

short pulse

 $egin{aligned} &I(t)\sim E_{\perp}B_{\perp}\sim g^2rac{1}{r^2}\delta(t)\ &I(\omega)\propto g^2rac{d^2r}{r^2}\cdot 1\ &dn\sim g^2rac{d^2r}{r^2}rac{d\omega}{\omega}\sim g^2rac{d^2q_{\perp}}{q_{\perp}^2}rac{d\omega}{\omega} \end{aligned}$

Eikonal formalism and Dipole cascades

Coulomb field for $r < 0.1 \text{ fm} \Rightarrow k_{\perp} > 2 \text{ GeV}$

Gluon emission \Rightarrow dipole field

Mueller Dipole model

$$E^2 \sim g^2 \frac{R^2}{r_1^2 r_2^2}; \quad \frac{d\mathcal{P}}{dy} = \bar{\alpha} \frac{d^2 r}{2\pi} \frac{R^2}{r_1^2 r_2^2}$$

LU,HU

MI, saturation and final states 13 Gösta Gustafson

Dipole-dipole scattering

Single gluon exhange \Rightarrow Color reconnection

Eikonal approximation \rightarrow Unitarity

Total, diffractive and elastic cross sections:

$$\sigma_{tot} \sim d^2 b < 2(1 - e^{-\sum f_{ij}}) >$$

 $\sigma_{diff} \sim d^2 b < (1 - e^{-\sum f_{ij}})^2 > \quad (\text{incl. elastic})$
 $\sigma_{el} \sim d^2 b (< 1 - e^{-\sum f_{ij}} >)^2$

The result is sensitive to fluctuations

Problems

- 1. LL BFKL not good enough
- 2. Non-linear effects
- 3. Massless gluon exchange violates the Froissart bound
- 4. Fluctuations and correlations. BK eq. \sim mean field theory
- 5. Exclusive final states
- 6. Analytic calculations applicable at extreme energies

Salam: Dipole splitting diverges for small *r*. Cross section finite but numerical difficulties

New approach:

- Include NLL BFKL effects
- Include Nonlinear effects in evolution
- ▶ Remove virtual emissions → Final states

3 major contributions:

- Running coupling
- Non-singular terms in splitting function (suppresses large z-values)

Mostly included by energy conservation and the constraint that a daughter must not be faster than her recoiling parent

Projectile-target symmetry (Energy-scale terms)
 Fixed by p_-conservation (equivalent to consistency constraint)

Includes effects beyond NLL: λ_{eff} is not negative for large α_s

Non-linear effects, Saturation

Color suppressed relative to dipole splitting. Two dipoles with same color:

Quadrupole. Better approximated by smaller dipoles

The swing \Rightarrow Recoupling of the dipole chain

Dipole loop \sim Pomeron loop

Similar recouling effect from gluon exchange

Almost frame independent result

Note: Number of dipoles not reduced. Saturation effect because smaller dipoles have smaller cross section.

MI, saturation and final states 21 Gö

Gösta Gustafson

LU,HU

Confinement

Effective gluon mass
$$\Rightarrow \frac{1}{k_{\perp}^2} \rightarrow \frac{1}{k_{\perp}^2 + m^2}$$

Dipole splitting:
$$\mathbf{E} \sim rac{\mathbf{r}}{r^2}
ightarrow rac{\mathbf{r}}{r \, r_{max}} \mathcal{K}_1(r/r_{max}), \qquad r_{max} = 1/m$$

Dipole scattering: $ln(1/r) \rightarrow K_0(r_{max}/r)$

Reduced spread to wider dipole distribution

 \Rightarrow Froissart bound satisfied. (E. Avsar)

Applications

pp Scattering

Simple model for proton wave function: Triangle with 3 dipoles

Elastic cross section $d\sigma/dt$

Energy variation of the dip fixed by the evolution

Geometric scaling

MI, saturation and final states 2

Gösta Gustafson

LU,HU

Diffraction

Sensitive to fluctuations and correlations

Fluctuations within the cascade \Rightarrow Less fluctuations needed in impact parameter profile. pp scattering more gray and less black/white.

Diffractive excitation also reproduced.

MI, saturation and final states

Gösta Gustafson

DVCS and $\gamma^* p \rightarrow V p$

Quasi-elastic $\gamma^* p \rightarrow \gamma p$ scattering

< • • • **•**

* SIG

 $\gamma^{\star} p
ightarrow
ho p$

Also *t*-dependence look good. As well as ϕ -production.

(BG = Boosted Gaussian wave function, DGKP = Dosch, Gousset, Kulzinger, Pirner)

Final States

Dipoles which do not interact have to be treated as virtual and reabsorbed

Total number of loops: Tevatron 3.5 (0.65+2.2+0.65), LHC 5 FSR has to be added Work in progress

$p_{\perp} - n_{ch}$ correlation

Problem in present MCs. Fits to p_{\perp} -multiplicity correlation for hadrons need maximum color reconnection

Dipole cascade adds contribution from p_{\perp} -multiplicity correlation for partons

Cascade with many dipoles $\Rightarrow < r >$ small

- \Rightarrow Stronger screening \Rightarrow Smaller effective cutoff $p_{\perp 0}$
- \Rightarrow larger $< p_{\perp} >$ in events with many hadrons

Toy model result (R. Corke)

Summary

- Dipole formulation of high energy collisions in transverse coordinate space
- Main ingredients:
 - NLL contributions to BFKL
 - Non-linear effects: Saturation and multiple subcollisions
 - Confinement effects
 - Includes momentum-impact parameter correlations
 - Simple proton and photon model
 - MC implementation
- Fair description of data:
 - Total cross sections for pp and \(\gamma^* p\)
 - (Quasi-) Elastic scattering in pp and γ*p
 - Diffractive excitation
- To come: Final states
- Wanted: Understanding the connection to t-channel picture of pomeron loops

Extras

Multiple Interactions, Saturation, and Final States in *pp* Collisions and DIS

Gösta Gustafson

Lund Univ. and Hamburg Univ.

Epiphany 2009, Krakow 5-7 Jan. Dedicated to the memory of Jan Kwieciński

Work done with Emil Avsar, Christoffer Flensburg, and Leif Lönnblad

