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SUMMARY

• WHY AND WHERE SMALL x RESUMMATION IS

NECESSARY
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• MATCHING AND PHENOMENOLOGY
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PRECISION QCD: FROM HERA TO LHC
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WHY WE SHOULD WORRY ABOUT SMALL X:

THE NNLO CORRECTIONS

THEORY

THE COEFFICIENT FUNCTION CL

(Moch, Vermaseren, Vogt 2005)

• PERTURBATIOMN THEORY UNSTABLE

• LEADING LOG APPROX POOR

PHENOMENOLOGY

THE BEST–FIT GLUON

(mstw 2008)Gluon LO , NLO and NNLO
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WHY WE SHOULD WORRY ABOUT SMALL X:

THE IMPACT AT LHC

CORRELATION BETWEEN PDFS AND THE W TOTAL CROSS SECTION

(CTEQ 2008)
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PERTURBATIVE INSTABILITY:

THE SINGLET SPLITTING FUNCTION

xP (αs, x) ∼
x→0
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QUESTIONS & ANSWERS

• Q: CAN ONE RESUM LARGE SMALL x CORRECTIONS TO ALL ORDERS

A:

• Q: CAN ONE COMBINE SMALL x RESUMMATION WITH STANDARD PERTURBATIVE

EVOLUTION

A:

• Q: CAN ONE OBTAIN A STABLE PERTURBATIVE EXPANSION AT THE RESUMMED
LEVEL?

A:

• Q: CAN ONE UNDERSTAND THE SUCCESS OF NLO PERTURBATION THEORY DESPITE
LARGE SMALL x TERMS?

A:
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THE THREE INGREDIENTS FOR
STABLE RESUMMATION



THE FIRST INGREDIENT: DUALITY (fixed coupling)

(T. JAROSZEWICZ, 1982; R. BALL & S.F., 1995)

THE ALTARELLIPARISI EQN IS AN INTEGRO–DIFFERENTIAL EQUATION ⇒ IT CAN

BE EQUIVALENTLY VIEWED AS Q2–EVOLUTION EQUATION FOR x–MOMENTS

(usual RG eqn.), OR x–EVOLUTION EQUATION FOR Q2–MOMENTS(BFKL eqn.)

EVOLUTION IN t = lnQ2

d
dtG(N, t) = γ(N, αs) G(N, t)

MELLIN x–MOMENTS

G(N, t) =
∫

∞

0
dξ e−Nξ G(ξ, t)

EVOLUTION IN ξ = ln 1/x
d
dξ G(ξ, M) = χ(M, αs) G(ξ, M)

MELLIN Q2–MOMENTS

G(ξ, M) =
∫

∞

−∞
dt e−Mt G(ξ, t)

THE TWO EQUATIONS HAVE THE SAME SOLUTIONS

PROVIDED THE EVOLUTION KERNELS ARE RELATED BY

χ(γ(N, αs), αs) = N

γ(χ(M, αs), αs) = M

& BOUNDARY CONDITIONS RELATED BY

H0[M ] → G0(N) = H0[γ(N, αs)]/χ′(γ(N, αs))



. . . CAN SWITCH FROM LLQ2
TO LL1/x

CHOOSING THE EVOLUTION KERNEL

ln 1/x EVOLUTION

BFKL LL1/x Evolution
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. . . IN EITHER EQUATION!

ln Q2 EVOLUTION

Altarelli-Parisi

LLQ2 & NLLQ2 Evolution
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G(N, t) = γ(N, αs) G(N, t)



DUAL PERTURBATIVE EXPANSIONS

lnQ2
EVOLUTION

γ(N) = α(
c
(1)
−1

N
+ c

(1)
0 + . . .) + α2(

c
(2)
−2

N2
+

c
(2)
−1

N
+ . . .)

γs(N) = c
(1)
−1

α

N
+ c

(2)
−2

α2

N2
+ . . .

1/N POLES ⇔ ln 1/x

γ0(N)⇐

γs(αs/N) ⇐

ln 1/x EVOLUTION

χ(M) = α(
c̃
(1)
−1

M
+c̃

(1)
0 +. . .)+α2(

c̃
(2)
−2

M2
+

c̃
(2)
−1

M
+. . .)

χs(M) = c̃
(1)
−1

α

M
+ c̃

(2)
−2

α2

M2
+ . . .

1/M POLES ⇔ lnQ2

⇒ χs(αs/M)

⇒ χ0(M)



THE PROBLEM WITH LL1/x EVOLUTION: NL CORRECTIONS!

ln 1/x EVOLUTION

BFKL LL1/x Evolution
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d
dξ

G(M, t) = χ(M, αs) G(M, t)

• THE LLQ2
AND LL1/x KERNELS GREATLY DIFFER FROM EACH OTHER

• THE EXPANSION OF THE LL1/x KERNEL LOOKS VERY UNSTABLE



THE DOUBLE–LEADING EXPANSION

γ(N, αs) =
[

αsγ0(N) + γs

(

αs
N

)

− ncαs
πN

]

⇐

+αs

[

αsγ1(N) + γss

(

αs
N

)

− αs

(

e2

N2
+ e1

N

)

− e0

]

+ · · ·

⇒χ(M, αs) =
[

αsχ0(M) + χs

(

αs
M

)

− ncαs
πM

]

+αs

[

αsχ1(M) + χss

(

αs
M

)

− αs

(

f2

M2
+ f1

M

)

− f0

]

+ · · ·

DUALITY HOLDS ORDER–BY–ORDER IN THE DOUBLE–LEADING EXPANSION:

the dual of χLO
DL is γLO

DL up to terms of order γNLO
DL , and conversely



DOUBLE–LEADING EVOLUTION

leading &

next–to–leading

DL kernel
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• THE DL KERNEL HAS A WELL–BEHAVED PERTURBATIVE EXPANSION

• DL IS CLOSE TO THE LLQ2
RESULT FOR N ∼> 0.3 ↔ M ∼< 0.2,

CLOSE TO LL1/x FOR M ∼ 1/2



DOUBLE–LEADING EVOLUTION
MOMENTUM CONSERVATION!

γ(1) = 0
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THE SECOND INGREDIENT: EXCHANGE SYMMETRY

(CIAFALONI, SALAM, 1999)

DIAGRAMS FOR ln 1/x EVOLUTION KERNEL

d
dξ

G(ξ, M) = χ(M, αs) G(ξ, M)

χ(ξ, M) =
∫ ∞
−∞

dQ2

Q2

(

Q2

k2

)−M

χ(ξ, Q2

k2 )

SYMMETRIC UPON INTERCHANGE

OF INITIAL AND FINAL PARTON VIRTUALITIES

Q2 ↔ k2 ⇔ M ↔ 1 − M

k2 ⇔ Q2

Q2 ⇔ k2

COLLINEAR RES. OF 1
M POLES ↔ ANTICOLLINEAR RES. OF 1

1−M POLES

SYMMETRY BREAKING

• DIS KINEMATIC VARIABLES s = Q2

x (small x)

• RUNNING OF THE COUPLING αs(Q
2)

BOTH CAN BE DETERMINED EXACTLY



SYMMETRIZED EXPANSION

THE χ KERNEL

MOMENTUM CONSERVATION + SYMMETRY⇒χ ALWAYS HAS A MINIMUM

SYMMETRIC VARIABLES

• LO, NLO SYMMETRIC RE

SUMMED CLOSE TO EACH

OTHER

• χ IS AN ENTIRE FCTN

(QUADRATIC APPROX. IS

EXCELLENT!)

• RESUMMED NLO HIGHER

THAN LO



SYMMETRIZED EXPANSION

THE χ KERNEL

MOMENTUM CONSERVATION + SYMMETRY⇒χ ALWAYS HAS A MINIMUM

ASYMMETRIC VARIABLES

• LO, NLO SYM. CLOSE TO

EACH OTHER

• LO, NLO SYM. CLOSE TO

AP

• CURVATURE & INTERCEPT

SAME IN SYM. & ASYM.

VARIABLES

• RESULT DETERMINED BY MOM. CONS. + SYM.

• AMBIGUITIES MINIMAL, (CFR. ABF VS. CCSS) BUT MATCHING TO GLAP CRUCIAL



THE THIRD INGREDIENT: RUNNING COUPLING
(COLLINS, KWIECINSKI, 1989; ABF, 2001)

• THE RUNNING OF THE COUPLING α(t) = αµ[1 − β0αµt + . . .]

(t ≡ ln Q2

µ2 ) IS LEADING LOG Q2, BUT NEXT–TO–LEADING LOG 1
x

• UPON MMELLIN TRANSFORMATION (ln x EVOLUTION)

αs(t) BECOMES AN OPERATOR:

αs(M) = αµ2 [1 + β0αµ2

d

dM
+ . . .]

⇒ EVOLUTION EQUATION for G(N, M) with b.c. H0(M)
(

1 − αµ

N

)

χ(M)G(N, M) − H0(M) = β0αµ
d

dM
G(N, M)

• GOOD NEWS: DUALITY STILL HOLDS AT NLO& BEYOND

–

γ(αs(t), αs(t)/N) = γs(αs(t)/N) + αs(t)β0∆γss(αs(t)/N)+

+(αs(t)β0)2∆γsss(αs(t)/N) + O(αs(t)β0)3

– TERMS ∆γsn CAN BE CALCULATED TO ALL ORDERS THROUGH AN OPERATOR

APPROACH (BALL & S.F., 05)



THE THIRD INGREDIENT: RUNNING COUPLING
(COLLINS, KWIECINSKI, 1989; ABF, 2001)

• THE RUNNING OF THE COUPLING α(t) = αµ[1 − β0αµt + . . .]

(t ≡ ln Q2

µ2 ) IS LEADING LOG Q2, BUT NEXT–TO–LEADING LOG 1
x

• UPON MMELLIN TRANSFORMATION (lnx EVOLUTION)

αs(t) BECOMES AN OPERATOR:

αs(M) = αµ2 [1 + β0αµ2

d

dM
+ . . .]

⇒ EVOLUTION EQUATION for G(N, M) with b.c. H0(M)
(

1 −
αµ

N

)

χ(M)G(N, M) − H0(M) = β0αµ
d

dM G(N, M)

• BAD NEWS: PERTURBATIVE INSTABILITY

• NLO R.C. CORRECTION
NOT UNIFORMLY SMALL AS x → 0:

∆Pss(αs, ξ)

Ps(αs, ξ)
∼

ξ→∞

(αsξ)
2

• BUT SERIES OF CORRECTIONS CAN BE COM
PUTED AND SUMMED TO ALL ORDERS

LO and NLOdouble leading

+ RC term



ASYMPTOTIC SOLUTION & LEADING SINGULARITY

ASYMPTOTIC BEHAVIOUR CONTROLLED BY

MINIMUM OF χ(M) ⇔ RIGHTMOST SING. OF γ(N)

QUADRATIC KERNEL χq(α̂s, M) = [c(α̂s) + 1
2κ(α̂s)(M − Ms)

2]

CAN SOLVE EXACTLY WITH LINEARIZED c(α̂s), κ(α̂s)

IN TERMS OF BATEMAN FUNCTION Kν(x):

• G(N, t) ∝ K2B(αs,N)

[

1
β0ᾱs(t)A(αs,N)

]

A, B DEPEND ON αs, N TRHOUGH c, κ

• ASYMPTOTIC LEADING LOG SMALL x SE

RIES RESUMMED

• BRANCH CUT IN γ REPLACED BY SIMPLE

POLE

THE EFFECTIVE RESUMMED KERNEL



PUTTING EVERYTHING TOGETHER

THE RESUMMED ANOMALOUS DIMENSION:

γrc
Σ NLO

(αs(t), N) = γrc, pert
Σ NLO

(αs(t), N) + γB(αs(t), N) − γB
s (αs(t), N) − γB

ss(αs(t), N)

−γB
ss,0(αs(t), N) + γmatch(αs(t), N) + γmom(αs(t), N)

• γrc, pert
Σ NLO (αs(t), N) CONTAINS ALL TERMS WHICH ARE UP TO NLO IN THE

DOUBLELEADING EXPANSION, SYMMETRIZED (SO ITS DUAL χ HAS A MINIMUM)

• γB(αs(t), N) RESUMS THE SERIES OF SINGULAR RUNNING COUPLIG CORRECTIONS

• γB
s (αs(t), N), γB

ss(αs(t), N) γB
ss,0(αs(t), N) ARE DOUBLE COUNTING SUBTRACTIONS

BETWEEN THE PREVIOUS TWO

• γmom SUBTRACTS SUBLEADING TERMS WHICH RUIN MOMENTUM CONSERVATION

• γmatch SUBTRACTS ANY CONTRIBUTION WHICH DEVIATES FROM NLO GLAP AND AT

LARGE N DOESN’T DROP AT LEAST AS 1
N



RESUMMATION: GENERAL FEATURES

THE SPLITTING FUNCTION

FIXED COUPLING
RUNNING COUPLING

• RESUMMED EXPANSION CONVERGES RAPIDLY

• BEHAVIOUR FOR x < 10−2
VERY STABLE

• CAREFUL MATCHING OF SMALL x RUNNING COUPLING TERMS REQUIRED

compare with CCSS x ∼ 0.2



RESUMMATION: GENERAL FEATURES

SMALL x BEHAVIOUR

SINGULARITY IN ANOM. DIM. AT N = α ⇒ ASYMPT. SMALLx POWER G ∼ x−α

SMALLx POWER VS. αs SLOPE OF THE SPLITTING FUNCTION

1 2 3 4 5 6(xP)’

log(1/x)

0.2

0.1

0

-0.1

-0.2

-0.3

GLAP’NLO

P’rc,res NLO P’Bateman

• ABOVE x ∼> 0.2 SPLITTING FUNCTION COINCIDES NLO GLAP

• BELOW x ∼< 10−2
SPLITTING FUNCTION COINCIDES WITH SMALL x ASYMPTOTIC

SOLUTION (C. Frugiuele, 2007)

• SMALL x INTERCEPT & CURVATURE DETERMINE RESUMMED BEHAVIOUR



MATCHING AND
PHENOMENOLOGY



RESUMMATION: FROM EVOLUTION TO PHYSICAL OBSERVABLES

SCHEME CHOICE

2 × 2 ANOM. DIM. MATRIX

→ 2 EIGENVECTORS,

ONLY ONE AFFECTED

BY RESUMMATION

(GLUON AT LO)

⇒

THE RELATION BETWEEN (Q,G)

AND EIGENVECTORS IS A SCHEME

CHOICE

COMPLICATIONS

• UNPHYSICAL SINGULARITIES DUE TO EIGENVALUE CROSSING

• MUST TRANSF. FROM Q0MS USED IN RESUM TO MS USED AT FIXED ORDER

ALTERNATIVE APPROACH (CCSS): MATRIX BFKL EQUATION (IN PROGRESS)

COEFFICIENT FUNCTION RESUMMATION

RESUMMED COEFFICIENT FUNCTION

AFFECTED BY UNPHYSICAL SINGU

LARITIES

⇒
REMOVED BY RUNNING COUPLING

RESUMMATION



nf 6= 0: THE GLUON SECTOR

• MUST REMOVE CUT FROM AP
DIAGONALIZATION

(P+ NOT WELL DEFINED)

• nf DEPENDENCE

NOT NEGLIGIBLE

• SMALL x RISE SOFTENED BY

COUPLING TO QUARKS

Pgg, nf = 0, 3, 4, 5 (top to bottom)

NLO, NNLO, RESUMMED



THE SPLITTING FUNCTION MATRIX

nf dependence: nf = [0, ]3, 4, 5

NLO, NNLO, RESUMMED

⇑ nf GROWS

⇓ nf GROWS



THE SPLITTING FUNCTION MATRIX

αs dependence: αs = 0.1, 0.15, 0.2, 0.25, 0.3

NLO, NNLO, RESUMMED

⇑ αs GROWS

⇓ αs GROWS



THE SPLITTING FUNCTION MATRIX

SMALL x SCHEME DEPENDENCE (ONLY AFFECTS GLUON SECTOR):

LO (DASH), NLO, NNLO, RESUMMED (Q0MS) RESUMMED (MS) nf = 4, αs = 0.2



THE COEFFICIENT FUNCTION MATRIX

NLO, NNLO, RESUMMED (Q0MS) RESUMMED (MS) nf = 4, αs = 0.2



HOW DO THE INITIAL PDFS CHANGE?

KEEP F2 & FL FIXED AT Q0 = 5 GEV

COMPUTE K(x) ≡ qnew(x, Q2
0)/qNLO(x, Q2

0); gnew(x, Q2
0)/gNLO(x, Q2

0)

NNLO, RESUMMED Q0MS, RESUMMED MS
GLUON QUARK

• EFFECT OF RESUMMATION COMPARABLE TO NNLO BUT STABLE!

• RESUMMED SUPPRESSION DUE TO LARGER COEFFICIENT FUNCTIONS



HOW DO PDFS CHANGE WITH SCALE?

KEEP F2 & FL FIXED AT Q0 = 5 GEV

COMPUTE K(Q) ≡ qnew(x, Q2)/qNLO(x, Q2); gnew(x, Q2)/gNLO(x, Q2)

NNLO, RESUMMED Q0MS, RESUMMED MS; x = 10−2, 10−4, 10−6

GLUON QUARK

• EVOLUTION WASHES OUT THE DIFFERENCES



PHYSICAL OBSERVABLES: FIXED INPUT
evolve pdf fixed in the DIS scheme (fixed starting F2)

compute K(x) ≡ F resum
2 (x, Q2)/FNLO

2 (x, Q2)
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COMPARISON WITH THE THORNEWHITE APPROACH:
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K
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x = 0.001
x = 0.0001
x = 0.00001
x = 0.000001

TW VS. ABF:

• QUALITATIVELY SIMILAR, TW LESS STABLE (K LARGER & OSCILLATORY): NO

COLLINEARANTICOLL. RESUMMATION?

• TW Q2 DEP. DOES NOT FLATTEN AT LARGE SCALE (TW): SCHEME NOT FULLY CONSISTENT?

• TW K 6= 1 AT x
∼
> 0.01: LARGE x MATCHING?



EFFECT ON PHYSICAL OBSERVABLES

KEEP F2 & FL FIXED AT Q0 = 2 GEV

COMPUTE K(Q) ≡ F new
2 (x, Q2)/FNLO

2 (x, Q2); F new
L (x, Q2)/FNLO

L (x, Q2)

NNLO, RESUMMED Q0MS, RESUMMED MS; x = 10−2, 10−4, 10−6

F2 FL

• EFFECT OF RESUMMATION COMPARABLE TO NNLO

• RESUMMED SUPPRESSION DUE TO DIP IN EVOLUTION & PDF SUPPR. LOW SCALE

• SCHEME DEPENDENCE SMALLER THAN FOR PDFS

• EVOLUTION WASHES OUT THE DIFFERENCES



STABILITY OF PHYSICAL OBSERVABLES

FACTORIZATION SCALE VARIATION: NLO, RESUMMED Q0MS, RESUMMED MS

REN. SCALE VARIATION OF PDFS

• SCALE DEPENDENCE SIMILAR AT RESUMMED AND FIXED ORDER
⇒ RESUMMED PERT. EXPANSION AS GOOD AS STANDARD

• SCALE DEP OF F2 SMALLER THAN SCALE DEP OF q (FL less stable: starts at NLO)



STRUCTURE FUNCTIONS: LHEC PHENOMENOLOGY

USING KFACTORS, BASED ON NNPDF1.0 PARTONS

Q2 = M2
W ; NLO, NNLO, RES.

F2
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F
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M
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x

Input PDFs: NNPDF1.0

DGLAP NLO
DGLAP NNLO

NLO + Resummation

FL
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 1

 1.5

 2

 2.5

 3

 1e-05  0.0001  0.001  0.01

F
Lp (x

,Q
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M
W

2 )

x

Input PDFs: NNPDF1.0

DGLAP NLO
DGLAP NNLO

NLO + Resummation

• RESUMMATION SIZABLE IN LHC/LHEC REGION

• EFFECT OUTSIDE NLO PDF ERROR BAND

• NNLO CORRNS SMALLER



RESUMMED HARD CROSS SECTIONS: RECENT PROGRESS

• HIGH ENERGY FACTORIZATION ONLY AVAILABLE AT LEADING ln x (Catani, Ciafaloni,

Hautmann 93)

• LEADING NONTRIVIAL CORRECTIONS KNOWN FOR DIS (Catani, Ciafaloni, Hautmann 92-94),

HQ PHOTO–, ELECTRO– (Catani, Ciafaloni, Hautmann 90-92) AND HADRO–PRODUCTION

(Ball, K. Ellis 01)

• RECENTLY COMPUTED ALSO FOR DRELLYAN (Ball, Marzani 08)

• RECENT PROGRESS IN THE COMPUTATION OF HIGGS PRODUCTION IN gg FUSION:

– LEADING SINGULARITIES COMPUTED IN m⊤ → ∞ LIMIT (UNPHYSICAL DOUBLE LOGS)

(Hautmann 02)

– LEADING SINGULARITIES COMPUTED NUMERICALLY IN PHYSICAL CASE, RESULT UP NNLO

USED TO IMPROVED FIXED ORDER (Marzani, Ball, del Duca, S.F., Vicini, 08)

σ(gg → H)
NLO
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mtop → ∞, EXACT SMALL x, EXACT



CONCLUSIONS

• WE KNOW HOW INCLUDE ALL LOG ENHANCED TERMS UP TO

NLO WITH CONTROL OF FACTORIZATION SCHEME

• RESULTS STABLE, AMBIGUITIES SMALL

• DIS @ HERA: EFFECTS AS LARGE AS NNLO, OPPOSITE SIGN

• PHENOMENOLOGY FOR HADRONIC PROCESSES AT LHC

BEHIND THE CORNER!
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CONCLUSIONS

• WE KNOW HOW INCLUDE ALL LOG ENHANCED TERMS UP TO

NLO WITH CONTROL OF FACTORIZATION SCHEME

• RESULTS STABLE, AMBIGUITIES SMALL

• DIS @ HERA: EFFECTS AS LARGE AS NNLO, OPPOSITE SIGN

• PHENOMENOLOGY FOR HADRONIC PROCESSES AT LHC

BEHIND THE CORNER!

LHC WILL PROBE PHYSICS UNDER EXTREME CONSITIONS:

WE BETTER USE THE BEST THEORY WE HAVE

FORTUNATELY WE HAVE GOT A FEW EXTRA

MONTHS TO WORK ON IT....



EXTRAS



RESUMMATION: THE CSS APPROACH

• SOLVE NUMERICALLY (ξ, Q2) SPACE INTEGRAL EQUATION

G(ξ, Q2, Q2
0) = G0(Q

2, Q2
0)Θ(ξ) +

∫ ξ

0
dξ′

∫ Q2

Q2

0

dQ̄2K(ξ − ξ′; Q2, Q2
0)G(ξ′, Q2, Q2

0)

•

KERNEL K(ξ − ξ′; Q2, Q2
0) OBTAINED BY IN

VERSEMELLIN FROM COLLINEAR–RESUMMED

NLO BFKL αs(Q
2, Q2

0)χ(M)

(EFFECTIVELY, BFKL + MOMENTUM + LO

GLAP)

• DETERMINE NUMERICALLY Peff SUCH THAT

d
dtG(x, Q2, Q2

0) =
∫ 1

x
dz
z P

(

x
z , Q2

)

G(x, Q2, Q2
0)

• ADVANTAGE: CAN TREAT RUNNING COUPLING EXACTLY

• DISADVANTAGE: RESULT IS ONLY NUMERICAL ⇒ MATCHING TO GLAP HARD



nf 6= 0: THE QUARK SECTOR

COMPARISON WITH CCSS: QUALITATIVELY SIMILAR (BUT CCSS RISE MILDER)

Pqg, nf = 0, 3, 4, 5 (top to bottom)

NLO, NNLO, RESUMMED

CCSS



RESUMMATION: THE TW APPROACH

• BFKL NLO TERMS INCLUDED, BUT NO SYMMETRIZATION

• DOUBLE COUNTING SUBTRACTED BUT NO PERTURBATIVE MATCHING TO NLO

• INCONSISTENT FACTORIZATION SCHEME IN QUARK SECTOR (Q0DIS EVOLUTION, DIS COEFF

FCTN.)

• RUNNING COUPLING CORRECTIONS FACTORIZED AS IN ABF, BUT THROUGH TREATED BY

(DIVERGENT, ASYMPTOTIC) PERTURBATIVE EXPANSION

• NL RESUMMATION OF COEFFICIENT FUNCTIONS (NL IMPACT FACTORS APPROXIMATELY

INCLUDED)

• HEAVY QUARK THRESHOLDS INCLUDED

NLO VS. RESUMMED SPLITTING
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nf 6= 0: THE QUARK SECTOR

COMPARISON WITH THORNE & WHITE: QUALITATIVELY NOT SO SIMILAR (TW DIP)

Pqg, nf = 0, 3, 4, 5 (top to bottom)

NLO, NNLO, RESUMMED

THORNE & WHITE



RESUMMED HARD CROSS SECTIONS:

WHEN DO WE NEED THEM?

HARD CROSS SECTIONS ⊗ PARTON LUMINOSITY ⇒ PHYSICAL OBSERVABLES

• ENERGY FACTORIZATION ⇒ HARD CROSS SECTION

DEPENDS ON x AND Q2

• SMALL x RESUMMATION ⇔ Q2 DEPENDENCE

• IN MELLIN SPACE 1
N

↔ ln 1
x
; 1

M
↔ ln Q2

• IF M>>N⇒ SMALL x (HIGH ENERGY) RESUMMATION

IF N>>M ⇒ LARGE Q2 (COLLINEAR) RESUMMATION

• UPON CONVOLUTION N ↔ ∂
∂ ln x

; M ↔ ∂
∂ ln Q2

ACTING ON PARTON LUMINOSITY

• ESTIMATE FROM x, Q2 DEP. OF PARTON LUMI

SMALL x RESUMMATION SMALLER THAN COLLINEAR RESUMMATION REGION

⇒ FOLLOWS FROM ASYMPTOTIC FREEDOM



QUARK AND GLUON EVOLUTION

evolve toy G = (x, Q0) = x−0.18(1 − x)5, Q(x, Q0) = 1
3
G(x, Q0), Q0 = 2 GeV

GLUON

Q = 2, 10, 100, 1000 GeV (bottom to top)

QUARK

NLO, NNLO, RESUMMED

• LO VS NLO DIFFERENCE LARGER THAN FIXED VS RESUMMED

• RESUMMED LIES BETWEEN NLO & NNLO

• RESUMMATION EFFECT SIZABLE AT MEDIUMLARGE Q2

• RESUMMED GLUON BELOW UNRESUMMED, QUARK JUST BELOW


