Forward-backward multiplicity correlations in proton-proton and nucleus-nucleus collisions

Adam Bzdak
Institute of Nuclear Physics
Polish Academy of Sciences

Outline

- introduction:
- independent source model
- forward-backward multiplicity correlations
- multiplicity distribution
- two models of pp collisions:
- single source
- two sources
- AuAu collisions
- conclusions

Introduction

Independent source model

$$
\frac{d N(y)}{d y}=F_{\text {right }}(y)+F_{\text {left }}(y)
$$

Contribution from one wounded nucleon

This picture suggests specific long-range correlations

Forward-backward multiplicity correlations

An average $\left\langle n_{B}\right\rangle$ on the left at a given n_{F} on the right

$$
\left.\left\langle n_{B}\right\rangle\right|_{n_{F}}=\frac{\sum_{n_{B}} n_{B} P\left(n_{B}, n_{F}\right)}{\sum_{n_{B}} P\left(n_{B}, n_{F}\right)}=\mid \text { data } \mid=a+b n_{F}
$$

Multiplicity distribution

Negative Binomial Distribution (NBD)

Two models

Single source (model 1), two sources (model 2)

model 1
NBD \bar{n}, r

model 2
 NBD

$\bar{n} / 2, r / 2$

NBD
$\overline{\mathrm{n}} / 2, \mathrm{r} / 2$

Correlation strength:

$$
b=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{\left\langle n_{F}^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2}}
$$

Correlation strength at different pseudorapidity intervals

Nucleus-nucleus collisions
$W=W_{L}+W_{R}$ sources of particles

NBD
NBD

NBD

NBD
NBD

NBD

Preliminary STAR data $\Rightarrow>$ for the most central collisions $b_{A A} / b_{p p} \approx 5$

Simple superposition model:

$$
b_{A A}=1-\frac{1-b_{p p}}{1+\frac{r_{p p}}{2} b_{p p}\left[\frac{\left\langle W^{2}\right\rangle-\langle W\rangle^{2}}{\langle W\rangle}\right]}
$$

$\left\langle W^{2}\right\rangle-\langle W\rangle^{2} \neq 0$ fluctuations in the number of wounded nucleons
MC calculations $\Rightarrow \frac{\left\langle W^{2}\right\rangle-\langle W\rangle^{2}}{\langle W\rangle} \approx 3$ for the most central collisions
Thus more than 60% (maybe more) can be easily explained

Conclusions

- pp collisons
- single source model does not work
- two (independent) sources model works remarkably well
- AuAu collisons
- correlation strength enhancement
- important fluctuations in the number of wounded nucleons
- one should be careful when interpreting data

