(N)LO Simulations of Chargino Production and Decay

Tania Robens in collaboration with J. Kalinowski, W. Kilian, J. Reuter, K. Rolbiecki

RWTH Aachen

Epiphany Conference, Krakow, 5.1.2008

Tania Robens (N)LO Simulations of Chargino Production and Decay

1 Introduction and Motivation

- Charginos and Neutralinos in the MSSM
- Experimental accuracy and NLO results
- Chargino production at the ILC
- Inclusion of NLO results in WHIZARD
 - NLO cross section contributions
 - Photons: fixed order vs resummation
 - Results
- Production and decay at LO
 - Signal and background w/o cuts
 - Results including cuts
 - $\widetilde{\chi}^{\pm}$ and $\widetilde{\nu}$ mass determination
 - Inclusion of ISR and beamstrahlung

4 Summary and Outlook

Charginos and Neutralinos in the MSSM

Chargino and Neutralino sector in the MSSM: Reconstruction of SUSY parameters

- Charginos χ_i[±] and Neutralinos χ_i⁰ in the MSSM: superpositions of gauge and Higgs boson superpartners
- Chargino/ Neutralino sector: SUSY parameters at electroweak scale

 $\tan\beta,\,\mu$ (Higgs sector), $\textit{M}_{1},\,\textit{M}_{2}(\text{soft breaking terms})$

can be reconstructed from

masses of $\tilde{\chi}_1^{\pm}, \, \tilde{\chi}_2^{\pm}, \, \tilde{\chi}_1^{0}$, 2 σ in the $\tilde{\chi}^{\pm}$ sector

(Choi ea 98, 00, 01)

- low-scale parameters + evolution to high scales (RGEs): \Rightarrow hint at SUSY breaking mechanism (Blair ea, 02)
- requires high precision in ew-scale parameter determination

Tania Robens (N)LO Simulations of Chargino Production and Decay

Epiphany Conference, Krakow, 5.1.2008

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

combined LHC + ILC: %

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

• similar for $\tilde{\chi}^{\pm}$ decays (Fujimoto ea, Rolbiecki, 07) \Rightarrow include complete NLO contributions in analyses \Leftarrow

Tania Robens (N)LO Simulations of Chargino Production and Decay

Experimental accuracy and NLO results

Experimental accuracy and theoretical next-to-leading-order (NLO) corrections

- experimental errors: obtained from simulation studies (LHC/ ILC study, Weiglein ea, 04)
- generate "experimental data" with known SUSY input parameters
- errors: combination of statistical and systematic errors

```
combined LHC + ILC: \%
```

• Theory:

Full NLO SUSY corrections for $\sigma(ee \rightarrow \tilde{\chi} \tilde{\chi})$ at ILC: in the % regime (Fritzsche ea 04, Öller ea 04, 05)

• similar for $\widetilde{\chi}^\pm$ decays (Fujimoto ea, Rolbiecki, 07)

 \Rightarrow include complete NLO contributions in analyses \Leftarrow

Tania Robens (N)LO Simulations of Chargino Production and Decay

Monte Carlo Event Generators

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects

(e.g. Hagiwara ea, 05)

Epiphany Conference, Krakow, 5.1.2008

 \Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (W. Kilian, T. Ohl, J. Reuter, LC-TOOL-2001-039, arXiv: 0708.4233 [hep-ph])
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation, parton shower models,...

Monte Carlo Event Generators

From $\sigma_{\rm tot}$ to Monte Carlo event generators

MC event generators: Generate event samples (same form as experimental outcome)

- experiments: see final decay products
- need to compare with simulated event samples
- also: important irreducible background effects

(e.g. Hagiwara ea, 05)

Epiphany Conference, Krakow, 5.1.2008

 \Rightarrow include NLO results in Monte Carlo Generators \Leftarrow

- MC Generator WHIZARD (W. Kilian, T. Ohl, J. Reuter, LC-TOOL-2001-039, arXiv: 0708.4233 [hep-ph])
- so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
- includes various physical models (SM, MSSM, non-commutative geometry, little Higgs models), initial state radiation, parton shower models,...

Monte Carlo Event Generators

MC event generators: How do they work ??

- *m* → *n* particle process: in phase space Γ_n, 3 n − 4 independent variables x_i define "event"
- determine random values for x_i (within allowed regions), calculate dσ(x_i) ("weight" of event)
- for event simulation, calculate relative probability $p_{\text{evt}} = \frac{d\sigma(x_i)}{d\sigma_{\max}}$ ("unweigthing")
- hit-and-miss technique: take $r \in [0,1]$, accept event if $p \geq r$
- in practice: more sophisticated adaption methods for most MC generators

"unweighting" requires $p \ge 0$!

(not always fulfilled for NLO calculations, $O(\alpha)$ corrections $\propto \ln(k_0)$ can be solved by resumming all orders)

Chargino production at the ILC

In the following:

- Show results for NLO Event Generation for chargino production
- Show (**preliminary**) results for LO production and decay with SM/ MSSM background

Chargino production at the ILC

The process: Chargino production at the ILC

- ILC: future e^+e^- collider, $\sqrt{s} = 500 \,\text{GeV} (1 \,\text{TeV})$ "clean" environment, low backgrounds \Rightarrow precision-machine, errors $\mathcal{O}(\%_0)$
- Charginos: (typically) light in the MSSM \Rightarrow easily accessible at colliders (ILC/ LHC) \Leftarrow
- LO production at the ILC:

decays: typically long decay chains

e.g.
$$e^+ e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\tau}_1^+ \widetilde{\tau}_1^- \nu_\tau \, \bar{\nu_\tau} \left(\rightarrow \tau^+ \tau^- \nu_\tau \, \bar{\nu_\tau} \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0 \right)$$

Tania Robens (N)LO Simulations of Chargino Production and Decay

Part I: Inclusion of NLO results in WHIZARD

based on hep-ph/0607127 (Kilian ea), hep-ph/0610401 (TR)

NLO cross section contributions

NLO cross section contributions

$\sigma_{\rm tot}$ contributions and dependencies:

- $\sigma_{\rm born}$
- virtual $\mathcal{O}(\alpha)$ corrections: $\sigma_{\text{virt}}(\lambda)$
- emission of soft/ hard collinear/ hard non-collinear photons:

 $\sigma_{\mathsf{soft}}(\Delta E_{\gamma}, \lambda) + \sigma_{\mathsf{hc}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}) + \sigma_{2 \to 3}(\Delta E_{\gamma}, \Delta \theta_{\gamma})$

• higher order initial state radiation: $\sigma_{\text{ISR}} - \sigma_{\text{ISR}}^{\mathcal{O}(\alpha)}(Q)$ λ : photon mass , ΔE_{γ} : soft cut , $\Delta \theta_{\gamma}$: collinear angle

Tania Robens (N)LO Simulations of Chargino Production and Decay

Photons: fixed order vs resummation

Including FormCalc $\mathcal{O}(lpha)$ results in WHIZARD (1)

 inclusion in WHIZARD : split photon phase space for real photon into soft/ hard-collinear/ hard non-collinear region:

$$\sigma_{\text{Born}+\gamma} = \sigma_{\text{soft}} + \sigma_{\text{hard, coll}} + \sigma_{\text{hard,noncoll}}$$

soft photons (E_γ ≤ ΔE_γ): use soft photon approximation, add to virtual contribution (⇒ cancellation of IR divergencies):
 ⇒ integrate over effective matrix element in Γ₂:

$$\sigma_{\text{Born}} + \sigma_{\text{virt}}(\lambda) + \sigma_{\text{soft}}(\Delta E_{\gamma}, \lambda) = \int d\Gamma_2 |\mathcal{M}_{\text{eff}}|^2 (\Delta E_{\gamma})$$
$$\mathcal{M}_{\text{eff}}|^2 (\Delta E_{\gamma}) = (1 + f_s(\Delta E_{\gamma}, \lambda)) |\mathcal{M}_{\text{born}}|^2 + 2 \operatorname{Re}(\mathcal{M}_{\text{born}} \mathcal{M}_{\text{virt}}^*(\lambda))$$

 ΔE_{γ} : soft photon cut, λ : photon mass

Photons: fixed order vs resummation

Including FormCalc $\mathcal{O}(\alpha)$ results in WHIZARD (2)

 hard collinear photons: E_γ > Δ E_γ, θ_γ ≤ Δ θ_γ use hard collinear approximation (Dittmaier ea, 1993):

$$\begin{split} \sigma_{\text{hard, coll}} &= \int_{\text{hard, coll}} d\Gamma_3 |\mathcal{M}_{2 \to 3}|^2 \\ &\longrightarrow \int d\Gamma_2 \int_0^{x_0} dx_i f_{\pm}(x_i) |\mathcal{M}_{\text{Born}}^{(\pm)}|^2(x_i, s), \end{split}$$

 $x_i \colon$ energy fraction of incoming fermion after photon radiation integrate in Γ_2

• hard, non-collinear photons: calculated exactly using $\mathcal{M}_{(2\to 3)}$ generated by separate WHIZARD run using Γ_3

Photons: fixed order vs resummation

Fixed order method: Drawback

- Drawback: $|\mathcal{M}_{eff}|^2 < 0$ for small values of $\frac{\Delta E_{\gamma}}{\sqrt{s}}$
- well-known problem at LEP
- \bullet ad hoc solution: set $|\mathcal{M}_{eff}|^2\,=\,0$ for these cases
- too low energy cuts: $\mathcal{O}(\alpha)$ not sufficient, leads to "wrong" $\sigma_{\rm tot}$

Epiphany Conference, Krakow, 5.1.2008

• remark: event generator specific problem ($\sigma_{\rm tot}$ \geq 0)

Photons: fixed order vs resummation

Resumming leading logs to all orders

solution to fixed order drawback:

 \Rightarrow resumm respective contributions to all orders \Leftarrow

in practice: subtract O(α) soft + virtual collinear contributions in M_{eff}:

$$\begin{split} |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2 &= \left. \left(1 + f_{\mathsf{s}}(\Delta E_{\gamma}) \right) |\mathcal{M}_{\mathsf{born}}|^2 \, + \, 2 \, \mathsf{Re}(\mathcal{M}_{\mathsf{born}} \, \mathcal{M}_{\mathsf{virt}}^*) \right. \\ &- \left. 2 \, f_{\mathsf{s}}^{\mathit{ISR},\mathcal{O}(\alpha)}(\Delta E_{\gamma}) \, |\mathcal{M}_{\mathsf{born}}|^2 \end{split}$$

add the resummed contribution by folding with ISR structure function:

$$\int d\Gamma \int_0^1 dx_1 \int_0^1 dx_2 f^{\mathsf{ISR}}(x_1) f^{\mathsf{ISR}}(x_2) |\widetilde{\mathcal{M}}_{\mathsf{eff}}|^2(s, x_i)$$

f^{ISR}(x): Initial state radiation (Jadach, Skrzypek, Z.Phys. 1991), describes collinear (real + virtual) photons in leading log accuracy
 f^{ISR,O(α)}: soft integrated O(α) contribution

Tania Robens (N)LO Simulations of Chargino Production and Decay

Results

Results: cross sections

agrees with results in the literature (Fritzsche ea, Öller ea)

Tania Robens (N)LO Simulations of Chargino Production and Decay

Results

A closer look: ΔE_{γ} dependence of σ_{tot}

resummation includes higher order effects, 5% difference to 'sa' for $\Delta E_{\gamma} \leq 10 \, {\rm GeV}$

In summary:

shift in ΔE_{γ} leads to % effects, match ILC accuracy \Rightarrow careful choice of ΔE_{γ} , method important____

Tania Robens (N)LO Simulations of Chargino Production and Decay

Epiphany Conference, Krakow, 5.1.2008

 $) \land (\sim$

Results: simulated events

simulation results: angular distributions

Born, fixed order, resummation

!! more than 1 σ deviation !! $\sqrt{n_{\max}} \approx O(10^2)$; nbins = 20

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part II: Production and decay at leading order (Status report)

Signal and (MS)SM backgrounds

- \bullet Charginos: unstable particles \Rightarrow also consider decays
- here: leptonic decay mode

$$e^+ e^- \longrightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \longrightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^- \mu^+ \nu_\mu \bar{\nu}_e$$

signal: $e^- \mu^+ + \mathsf{E}_{\mathsf{miss}}$

• main SM backgrounds: (W (pair)production, τ pair production)

$$e^+e^- ~~ \longrightarrow~~$$
 anything $~~ e^-\,\mu^+\,
u_\mu\,ar
u_e\,(
u_ au\,ar
u_ au)$

• main SUSY backgrounds

$$e^+e^- \longrightarrow$$
 anything $\longrightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 e^- \mu^+ \nu_\mu \, \bar{\nu}_e \, (\nu_\tau \, \bar{\nu}_\tau)$

reducible/ irreducible background

Tania Robens (N)LO Simulations of Chargino Production and Decay

Point SPS1a'

- mSUGRA scenario
- according to Snowmass Points (Allanach ea, 02), in agreement with cosmology data/ WMAP ($\tilde{\chi}_1^0$ as DM candidate)

QR

Signal and background: Total cross sections

For SPS1a',
$$\sqrt{s}\,=\,500\,{
m GeV}$$

$$\begin{split} \sigma_{\text{signal}} &= (3.08 \pm 0.08)\,\text{fb} & \widetilde{\chi}^{\pm} \text{ production and decay} \\ \sigma_{\text{SM, 4}} &= (150.11 \pm 0.38)\,\text{fb} & W \text{ pair production} \\ \sigma_{\text{SM,6}} &\sim 14\,\text{fb} & \tau \text{ pair production (*)} \\ \sigma_{\text{SUSY, tot}} &= (4.69 \pm 0.01)\,\text{fb} & \text{signal + irreducible background} \\ \sigma_{\text{SUSY, 8}} &= (4.22 \pm 0.02)\,\text{fb} & \text{reducible, $\widetilde{\tau}$ pair production (*)} \end{split}$$

(*): processes not yet included in analysis (remember the "preliminary")

SUSY/ background: 3 %, 70 % of SUSY signal from $\tilde{\chi}^{\pm}$ production

Energy distributions w/o cuts

single and combined lepton energies, no cuts dominated by *W* production signal, add background (SUSY)

Tania Robens (N)LO Simulations of Chargino Production and Decay

Results including cuts

Cross sections including cuts

Include cuts on lepton energies and emission angles:

$$\cos heta_e \stackrel{!}{<} 0.5, E(e) \stackrel{!}{<} 150 \text{GeV}, E(\mu) \stackrel{!}{<} 150 \text{GeV}, \cos heta_{e,\mu} \stackrel{!}{\geq} 0.5$$

σ_{signal}	$(3.08 \pm 0.08){ m fb}$	\longrightarrow	(1.83 ± 0.05) fb
$\sigma_{\rm SM, 4}$	$(150.11 \pm 0.38) { m fb}$	\longrightarrow	(3.59 ± 0.66) fb,
$\sigma_{\rm SUSY, tot}$	$(4.69 \pm 0.01){ m fb}$	\longrightarrow	(2.44 ± 0.05) fb

SUSY/ background: 68 % (3 %), 75 % of SUSY signal from $\tilde{\chi}^{\pm}$ production (70 %)

Cuts significantly reduce SM background still large number of events ($\int \mathcal{L} = 1 ab^{-1}$).

Tania Robens (N)LO Simulations of Chargino Production and Decay

Results including cuts

Energy distributions including cuts

single and combined lepton energies, with cuts signal, add background (SUSY)

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ > < @ > < \arrow \ar

 $\widetilde{\chi}^{\pm}$ and $\widetilde{
u}$ mass determination

$\widetilde{\chi}^{\pm}$ and $\widetilde{ u}$ mass determination (1)

• SPS1a': $\widetilde{\chi}_1^\pm$ and $\widetilde{\nu}_{\rm e}$ nearly mass degenerate

$$m_{\widetilde{\chi}^{\pm}} = 183.67 \, {
m GeV}, \; m_{\widetilde{
u}} = 173.52 \, {
m GeV}$$

- $\tilde{\nu}$ decays to $\tilde{\chi}^0, \ \nu$: can only be observed indirectly
- determination from lepton energy (Freitas ea, 05):

$$m_{\widetilde{\chi}^{\pm}} = \sqrt{s} \, rac{\sqrt{E_{\min} E_{\max}}}{E_{\min} + E_{\max}}, \ m_{\widetilde{\nu}} = m_{\widetilde{\chi}^{\pm}} \sqrt{1 - rac{2(E_{\min} + E_{\max})}{\sqrt{s}}},$$

 $E_{\min, \max}$: edges of lepton energy distributions; $\tilde{\chi}_1^{\pm}$, $\tilde{\nu}_e$ are assumed onshell

Tania Robens (N)LO Simulations of Chargino Production and Decay

 $\widetilde{\chi}^{\pm}$ and $\widetilde{
u}$ mass determination

۲

$\widetilde{\chi}^{\pm}$ and $\widetilde{ u}$ mass determination (2)

read off:

$$E_{min} = 4.33 \pm 1.73 \,\mathrm{GeV}, \ E_{max} = 25.13 \pm 1.73 \,\mathrm{GeV}.$$

$$egin{array}{rcl} m_{\widetilde{\chi}^{\pm}} &=& 177.04 \,\pm\, 2.91 \, {
m GeV} \, (183.67), \ m_{\widetilde{
u}} &=& 166.28 \,\pm\, 2.74 \, {
m GeV} \, (173.52) \end{array}$$

• too low !! taking masses as input, obtain:

$$E_{min} = 4.32 \,\mathrm{GeV}, \ E_{max} = 22.54 \,\mathrm{GeV}$$

- \bullet read off maximal energy $E_{
 m max}\,=\,25.13\,\pm\,1.73\,{
 m GeV}$ too large
- offshell effect; still needs further investigation (work in progress)
- take $m_{\tilde{\chi}^{\pm}}$ from threshold scan:

$$m_{ ilde{
u}}~=~172.51~\pm~2.74\,{
m GeV}$$
 \checkmark

Tania Robens (N)LO Simulations of Chargino Production and Decay

Inclusion of ISR and beamstrahlung

Inclusion of ISR and beamstrahlung

Turn on initial state radiation and beamstrahlung

$\sigma_{\sf signal}$	$(1.83 \pm 0.05) \mathrm{fb}$	\longrightarrow	(1.54 ± 0.04) fb,
$\sigma_{\rm SM, 4}$	(3.59 ± 0.66) fb	\longrightarrow	(5.76 ± 0.08) fb
$\sigma_{\rm SUSY, tot}$	(2.44 ± 0.05) fb	\longrightarrow	(2.13 ± 0.05) fb

SM background enhanced, SUSY/ background: $37\%(68\%) \Rightarrow$ still large

signal, background (SUSY) mass determination: $E_{\min, \max}$ as before same conclusions \sqrt{s} and parameter point dependent !!

Summary and Outlook

- Chargino/ neutralino sector of MSSM: high precision in SUSY paramater analysis at EW scale (% at ILC)
- same size/ larger NLO corrections
- \Rightarrow include NLO results in Monte Carlo Event generators
 - successfull inclusion for NLO $e^+e^- o \widetilde{\chi}^+ \widetilde{\chi}^-$ in <code>WHIZARD</code>
 - resummation method for photons evades negative weight problem
 - NLO as well as higher order contributions significant !!
 - started to look at phenomenology of full process at LO including ISR and beamstrahlung
 - clear SUSY signal, mass determination for $\tilde{\nu}$ possible
 - however: some dominant background missing
 - offshell effects on mass determination still need investigation

Tania Robens (N)LO Simulations of Chargino Production and Decay

Epiphany Conference, Krakow, 5.1.2008

Jac.

MSSM addenda

Superpotential and breaking parts

Superpotential in MSSM

$$W = \bar{u}y_u QH_u - \bar{d}y_d QH_d - \bar{e}y_e LH_d + \mu H_u H_d$$

soft SUSY breaking terms, gauge sector

$$\frac{1}{2}(M_1\widetilde{B}\widetilde{B}+M_2\widetilde{W}^a\widetilde{W}^a+M_3\widetilde{g}\widetilde{g})+h.c.$$

Epiphany Conference, Krakow, 5.1.2008

MSSM addenda

Mass unification in mSUGRA and GMSB

More results

cut dependencies: $\Delta \theta_{\gamma}$

tests: collinear photon approximation

 σ_{tot} again larger for resummation method for higher angles: second order ISR effects between 0.05° and 0.1° $(\mathcal{O}(\%))$

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ > < @ > < ≧ > < ≧ > ≥ うくや Epiphany Conference, Krakow, 5.1.2008

More results

Angular distribution: Do we see $|\mathcal{M}|^2 < 0$ effects ?? (\checkmark)

 $\begin{array}{l} \mbox{Reminder:} \\ |\mathcal{M}_{eff}|^2 & \mbox{behaviour} \\ (\Delta E_{low} = 0.5 \mbox{ GeV}): \end{array}$

angular distribution:

More results

Angular distributions: higher orders

 N_{res}^+ : resummation, additionaly 2 \rightarrow 3 folded w ISR; most complete also higher order contributions statistically significant

photon approximations

η , f_s , hard collinear approximation, $ISR^{\mathcal{O}(\alpha)}$

•
$$\eta = \frac{2\alpha}{\pi} \left(\log \left(\frac{Q^2}{m_e^2} \right) - 1 \right) \quad (Q = \text{scale of process})$$

• $f_s = -\frac{\alpha}{2\pi} \sum_{i,j=e^{\pm}} \int_{|\mathbf{k}| \le \Delta \mathbf{E}} \frac{d^3k}{2\omega_k} \frac{(\pm) p_i p_j Q_i Q_j}{p_i k p_j k},$
 $\omega_k = \sqrt{\mathbf{k}^2 + \lambda^2}, p_i \text{ initial/ final state momenta, } k: \gamma$
(Denner 1992)

momentum

• hard collinear factor (\pm helicity conserving/ flipping):

$$f^{+}(x) = \frac{\alpha}{2\pi} \frac{1+x^2}{(1-x)} \left(\ln\left(\frac{s(\Delta\theta)^2}{4m^2}\right) - 1 \right), f^{-}(x) = \frac{\alpha}{2\pi} x.$$
(Dittmaier 1993)

۲

$$f_{s}^{ISR,\mathcal{O}(\alpha)} = \left[\int_{x_{0}}^{1} f_{ISR}(x) dx\right]_{\mathcal{O}(\alpha)} = \frac{\eta}{4} \left(2\ln(1-x_{0}) + x_{0} + \frac{1}{2}x_{0}^{2}\right)$$

Tania Robens (N)LO Simulations of Chargino Production and Decay Epiphany Conference, Krakow, 5.1.2008

soft region effects

ISR in its full beauty (Skrzypek ea, 91)

$$\begin{split} \Gamma_{ee}^{LL}(x,Q^2) &= \frac{\exp\left(-\frac{1}{2}\eta\gamma_E + \frac{3}{8}\eta\right)}{\Gamma(1+\frac{\eta}{2})} \frac{\eta}{2} (1-x)^{\left(\frac{\eta}{2}-1\right)} \\ &- \frac{\eta}{4} (1+x) + \frac{\eta^2}{16} \left(-2 (1-x) \log(1-x) - \frac{2\log x}{1-x} + \frac{3}{2} (1+x) \log x - \frac{x}{2} \right) \\ &- \frac{5}{2} + \left(\frac{\eta}{2}\right)^3 \left[-\frac{1}{2} (1+x) \left(\frac{9}{32} - \frac{\pi^2}{12} + \frac{3}{4} \log(1-x) + \frac{1}{2} \log^2(1-x) \right) \right. \\ &- \frac{1}{4} \log x \log(1-x) + \frac{1}{16} \log^2 x - \frac{1}{4} \text{Li}_2(1-x) \right) \\ &+ \frac{1}{2} \frac{1+x^2}{1-x} \left(-\frac{3}{8} \log x + \frac{1}{12} \log^2 x - \frac{1}{2} \log x \log(1-x)\right) \\ &- \frac{1}{4} (1-x) \left(\log(1-x) + \frac{1}{4}\right) + \frac{1}{32} (5-3x) \log x\right] ; \eta = \frac{2\alpha}{\pi} \left(\log\left(\frac{Q^2}{m_e^2}\right) - 1 \right) \end{split}$$

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ ► < @ ► < ≧ ► < ≧ ► ≧ ∽ Q (~ Epiphany Conference, Krakow, 5.1.2008

,

Some NLO matrix elements

Some NLO matrix elements

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≦ のへべ Epiphany Conference, Krakow, 5.1.2008

Some NLO matrix elements

Some NLO matrix elements

Tania Robens (N)LO Simulations of Chargino Production and Decay

□ > < 団 > < 亘 > < 亘 > < 亘 > < 亘 へ < Epiphany Conference, Krakow, 5.1.2008