Soft and collinear enhancements to top quark and Higgs cross sections

Nikolaos Kidonakis

(Kennesaw State University)

- Soft and collinear corrections
- Resummation and NNNLO expansions
- Single top production
 - t and s channels and tW production
- Higgs production via $b ar{b}
 ightarrow H$

Soft and collinear gluon corrections

Incomplete cancellations of infrared divergences between virtual diagrams and real diagrams with soft (low-energy) gluons

For the process $p_1 + p_2 \rightarrow p_3 + p_4$

define $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$, $u = (p_2 - p_3)^2$ and $s_4 = s + t + u - m_3^2 - m_4^2$, $z = Q^2/s$

At threshold $s_4 \rightarrow 0$ (1Pl) or $z \rightarrow 1$ (PIM)

Soft corrections $\left[\frac{\ln^k(s_4/M^2)}{s_4}\right]_{\perp}$ or $\left|\frac{\ln^k(1-z)}{1-z}\right|_{\perp}$

 $k \leq 2n-1$ for the $\mathcal{O}(\alpha_s^n)$ corrections

Resum (exponentiate) these soft corrections

At NLL accuracy requires one-loop calculations in the eikonal approximation

Also purely collinear corrections $\ln^k(s_4/M^2)$ or $\ln^k(1-z)$

Soft and collinear gluon corrections

The *n*-th order corrections in the partonic cross section

$$\hat{\sigma}^{(n)}(z) = V^{(n)} \,\delta(1-z) + \sum_{k=0}^{2n-1} S_k^{(n)} \left[\frac{\ln^k (1-z)}{1-z} \right]_+ + \sum_{k=0}^{2n-1} C_k^{(n)} \ln^k (1-z)$$

Near threshold soft corrections are dominant and provide excellent approximations to the full cross section

Examples: top pair and single top production

jet, direct photon, or W production at high p_T

In other cases purely collinear corrections also have to be included to get a good approximation (e.g. Higgs production).

The hadronic cross section

$$\sigma = \sum_{f} \int dx_1 dx_2 \, \phi_{f_1/p}(x_1,\mu_F) \, \phi_{f_2/\bar{p}}(x_2,\mu_F) \, \hat{\sigma}(s,t,u,\mu_F,\mu_R,\alpha_s)$$

Resummed cross section

Resummation follows from factorization properties of the cross section - performed in moment space

$$\hat{\sigma}^{res}(N) = \exp\left[\sum_{i} E^{f_i}(N_i)\right] \exp\left[\sum_{j} E^{f_j}(N_j)\right] \exp\left[\sum_{i} 2\int_{\mu_F}^{\sqrt{s}} \frac{d\mu}{\mu} \gamma_{i/i}(N_i, \alpha_s(\mu))\right] \\ \times \exp\left[\sum_{i} 2d_{\alpha_s} \int_{\mu_R}^{\sqrt{s}} \frac{d\mu}{\mu} \beta(\alpha_s(\mu))\right] H^{f_i f_j}(\alpha_s(\mu_R)) \\ \times \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}_j} \frac{d\mu}{\mu} \Gamma_S^{\dagger f_i f_j}(\alpha_s(\mu))\right] \tilde{S}^{f_i f_j}\left(\alpha_s\left(\frac{\sqrt{s}}{\tilde{N}_j}\right)\right) \exp\left[\int_{\sqrt{s}}^{\sqrt{s}/\tilde{N}_j} \frac{d\mu}{\mu} \Gamma_S^{f_i f_j}(\alpha_s(\mu))\right]$$

where

$$\sum_{i} E^{f_{i}}(N_{i}) = -\sum_{i} C_{i} \int_{0}^{1} dz \frac{z^{N_{i}-1}-1}{1-z} \left\{ \int_{(1-z)^{2}}^{1} \frac{d\lambda}{\lambda} \frac{\alpha_{s}(\lambda s)}{\pi} + \frac{\alpha_{s}((1-z)^{2}s)}{\pi} \right\} + \mathcal{O}(\alpha_{s}^{2})$$
$$\sum_{j} E^{\prime f_{j}}(N_{j}) = \sum_{j} \int_{0}^{1} dz \frac{z^{N_{j}-1}-1}{1-z} \left\{ C_{j} \int_{(1-z)^{2}}^{1-z} \frac{d\lambda}{\lambda} \frac{\alpha_{s}(\lambda s)}{\pi} - B_{j}^{(1)} \frac{\alpha_{s}((1-z)s)}{\pi} - C_{j} \frac{\alpha_{s}((1-z)^{2}s)}{\pi} \right\} + \mathcal{O}(\alpha_{s}^{2})$$

 $C_i = C_F = (N_c^2 - 1)/(2N_c), B_q^{(1)} = 3C_F/4$ for quarks; $C_i = C_A = N_c, B_g^{(1)} = \beta_0/4$ for gluons

 Γ_S is the soft anomalous dimension - a matrix in color space

NNNLO expansions of resummed cross section

Invert back to momentum space and expand to arbitrary order

NLO soft and collinear gluon corrections

$$\hat{\sigma}^{(1)} = F^B \frac{\alpha_s(\mu_R^2)}{\pi} \left\{ c_3 \left[\frac{\ln(1-z)}{1-z} \right]_+ + c_2 \left[\frac{1}{1-z} \right]_+ + c_1^{\mu} \,\delta(1-z) \right. \\ \left. + c_3^c \ln(1-z) + c_2^c \right\}$$

NNLO soft gluon corrections

$$\hat{\sigma}^{(2)} = F^B \frac{\alpha_s^2(\mu_R^2)}{\pi^2} \left\{ \frac{1}{2} c_3^2 \left[\frac{\ln^3(1-z)}{1-z} \right]_+ + \dots + \frac{1}{2} c_3 c_3^c \ln^3(1-z) + \dots \right\}$$

NNNLO soft gluon corrections

$$\hat{\sigma}^{(3)} = F^B \frac{\alpha_s^3(\mu_R^2)}{\pi^3} \left\{ \frac{1}{8} c_3^3 \left[\frac{\ln^5(1-z)}{1-z} \right]_+ + \dots + \frac{1}{8} c_3^2 c_3^c \ln^5(1-z) + \dots \right\}$$

Top quark production

Dominant process is pair production $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$

Very good agreement of theory (with soft-gluon corrections) with Tevatron data

Recent evidence for single top production - cross section consistent with theory

Opportunities for study of electroweak properties of the top

Top quark mass value lowered from \sim 175 GeV to \sim 170 GeV

Single top quark production

Partonic processes at LO

(a) t channel: $qb \rightarrow q't$ and $\bar{q}b \rightarrow \bar{q}'t$ ($ub \rightarrow dt$ and $\bar{d}b \rightarrow \bar{u}t$, etc.)

- (b) s channel: $q\bar{q}' \rightarrow \bar{b}t$ ($u\bar{d} \rightarrow \bar{b}t$, etc)
- (c) associated tW production: $bg \rightarrow tW^-$

One-loop eikonal vertex corrections to the soft function in the *t* **and** *s* **channels**

One-loop eikonal vertex corrections to the soft function in the tW channel

Top-quark eikonal self-energy one-loop corrections: (a) t channel; (b) s channel; (c) associated tW production

Single top production at the Tevatron - t channel

Matched cross section (exact NLO + soft gluon corrections through NNNLO)

$$\sigma^{t-\text{channel}}(m_t = 175 \,\text{GeV}) = 1.08^{+0.02}_{-0.01} \pm 0.06 \,\text{pb} = 1.08 \pm 0.06 \,\text{pb}$$

 $\uparrow_{\text{scale}} \uparrow_{\text{pdf}}$

Cross section for anti-top production is identical

Single top production at the Tevatron - s channel

Matched cross section (exact NLO + soft gluon corrections through NNNLO)

$$\sigma^{s-\text{channel}}(m_t = 175 \,\text{GeV}) = 0.49 \pm 0.02 \pm 0.01 \text{ pb} = 0.49 \pm 0.02 \text{ pb}$$

 $\uparrow \text{scale} \qquad \uparrow \text{pdf}$

Cross section for anti-top production is identical

Single top production at the Tevatron - tW channel

Approximate NNNLO cross section

$$\sigma^{tW}(m_t = 170 \,\text{GeV}) = 0.15 \pm 0.02 \pm 0.03 \,\text{pb} = 0.15 \pm 0.03 \,\text{pb}$$

 $\uparrow_{\text{scale}} \quad \uparrow_{\text{pdf}}^{\uparrow}$
 $\sigma^{tW}(m_t = 175 \,\text{GeV}) = 0.13 \pm 0.02 \pm 0.02 \,\text{pb} = 0.13 \pm 0.03 \,\text{pb}$
 $\uparrow_{\text{scale}} \quad \uparrow_{\text{pdf}}^{\uparrow}$

Cross section for anti-top production is identical

Single top production at the LHC - t channel

Threshold corrections not a good approximation of full QCD corrections

Exact NLO cross section

$$\sigma_{top}^{t-channel}(m_t = 175 \,\text{GeV}) = 146 \pm 4 \pm 3 \text{ pb} = 146 \pm 5 \text{ pb}$$

 $\uparrow \qquad \uparrow$
scale pdf

Antitop production at the LHC - t channel

Exact NLO cross section

↑ pdf

scale

Single top production at the LHC - s channel

Matched cross section (exact NLO + soft gluon corrections through NNNLO)

$$\sigma_{\text{top}}^{s-\text{channel}}(m_t = 170 \text{ GeV}) = 8.0^{+0.6}_{-0.5} \pm 0.1 \text{ pb} = 8.0^{+0.6}_{-0.5} \text{ pb}$$

$$\uparrow_{\text{scale}} \uparrow_{\text{pdf}}$$

$$\sigma_{\text{top}}^{s-\text{channel}}(m_t = 175 \text{ GeV}) = 7.2^{+0.6}_{-0.5} \pm 0.1 \text{ pb} = 7.2^{+0.6}_{-0.5} \text{ pb}$$

N. Kidonakis, Cracow Epiphany Conference on LHC Physics, January 2008

↑ pdf

scale

Single antitop production at the LHC - s channel Single antitop at the LHC $\,$ s-channel $\,$ S $^{1/2}\!\!=\!\!14$ TeV $\,$ Single antitop at the LHC s-channel $S^{1/2}=14$ TeV µ=m, µ=m, 5.5 1.5 NLO approx / LO LO 5 NLO approx NNLO approx / LO 1.4 NNLO approx NNNLO approx / LO NNNLO approx 4.5 factor 1.3 4 ь _{3.5}1 ¥1.2

1.1

İ60

165

180

Matched cross section (exact NLO + soft gluon corrections through NNNLO)

175

170

m_t (GeV)

(qd)

3

2.5F

2 **Г** 160

165

$$\sigma_{\text{antitop}}^{s-\text{channel}}(m_t = 170 \text{ GeV}) = 4.5 \pm 0.1 \pm 0.1 \text{ pb} = 4.5 \pm 0.2 \text{ pb}$$

$$\uparrow_{\text{scale}} \uparrow_{\text{pdf}}^{s-\text{channel}}$$

$$\sigma_{\text{antitop}}^{s-\text{channel}}(m_t = 175 \text{ GeV}) = 4.0 \pm 0.1 \pm 0.1 \text{ pb} = 4.0 \pm 0.2 \text{ pb}$$

$$\uparrow_{\text{scale}} \uparrow_{\text{pdf}}^{s-\text{channel}}$$

N. Kidonakis, Cracow Epiphany Conference on LHC Physics, January 2008

15

175

180

170

m_t (GeV)

Matched cross section (exact NLO + soft gluon corrections through NNNLO)

 $\sigma^{tW}(m_t = 170 \,\text{GeV}) = 44 \pm 5 \pm 1 \,\text{pb} = 44 \pm 5 \,\text{pb}$ $\uparrow_{\text{scale} \ \text{pdf}}$

$$\sigma^{tW}(m_t = 175 \,\text{GeV}) = 41 \pm 4 \pm 1 \,\text{pb} = 41 \pm 4 \,\text{pb}$$

$$\uparrow_{\text{scale}} \uparrow_{\text{pdf}}$$

Cross section for anti-top production is identical

Search for Higgs one of most important goals at both colliders

Main Standard Model production channel $gg \rightarrow H$

 $b\bar{b} \rightarrow H$ important in MSSM at high tan β

Very simple color structure and kinematics (like Drell-Yan)

Full corrections known to NNLO

Soft-gluon approximation inadequate - purely collinear terms must be added

Can calculate all soft corrections fully to NNNLO

Higgs production at NLO at the Tevatron

soft (or soft+virtual) corrections inadequate

inclusion of collinear terms provides very good approximation

Higgs production at NLO at the LHC

again soft (or soft+virtual) corrections (even more) inadequate

inclusion of collinear terms provides very good approximation

Higgs production at NNLO via $b\bar{b} \rightarrow H$

soft (or soft+virtual) corrections very inadequate

inclusion of collinear terms (especially at NL+ accuracy) provides excellent approximation

Higgs production via $b\bar{b} \rightarrow H$: *K* factors

Large *K* factors even at NLO

NNLO and NNNLO corrections are important

Quite similar at Tevatron and LHC

Higgs production via $b\bar{b} \rightarrow H$: SM cross sections

Summary

- Soft and collinear corrections important in cross sections
- Resummation and NNNLO expansions
- Single top production soft approximation works well
- Higgs production collinear+soft approximation is excellent