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a=g,uū,d,... d

dt
da(η, t)

= Pab(η, t)⊗ db(η, t)

Q ∼
√
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Structure of the one-hadron inclusive cross section
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Structure of the Monte Carlo algorithm

• Define the shower very 
general level

• Adding higher order

• Go beyond the leading color 
approximation

• Spin correlation

• Matching to fix order 
calculations



Introduction
Think of shower branching as developing in a “time” that goes 
from most virtual to least virtual.

Real time picture Shower time picture

Thus shower time proceeds backward in physical time for 
initial state radiation.



Density Matrix
The physical cross section is 

parton distributions

matrix element

σ[F ] =
∑

m

∫ [
d{p, f}m

] ︷ ︸︸ ︷
fa/A(ηa, µ

2
F ) fb/B(ηb, µ2

F )
1

2ηaηbpA ·pB

×
〈
M({p, f}m)

∣∣ F ({p, f}m)︸ ︷︷ ︸
∣∣M({p, f}m)

〉
︸ ︷︷ ︸

observable

It is useful to write this as trace in the color 
and spin space

σ[F ] =
∑

m

∫ [
d{p, f}m

]
Tr{ρ({p, f}m)︸ ︷︷ ︸F ({p, f}m)}

density operator in color ⊗ spin space
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∫ [
d{p, f}m

]
≡ 1

m!

m∏

i=1





∑

fi

∫
d4pi

(2π)4
2πδ+(p2

i )





∑

a

∫ 1

0
dηa

∑

b

∫ 1

0
dηb

× (2π)4δ
(

ηapA + ηbpB −
m∑

i=1

pi

)



Density Matrix

ρ({p, f}m) =
∣∣M({p, f}m)

〉fa/A(ηa, µ2
F )fb/B(ηb, µ2

F )
2ηaηbpA ·pB

〈
M({p, f}m)

∣∣

The density operator is 

or expanding it on a color and spin basis 

We use conventional treatment of spin, thus we have 
orthogonal basis:

〈
{s′}m

∣∣{s}m

〉
=

∏

i=a,b,1,...,m

δ
s′

i
si

ρ({p, f}m) =
∑

s,c

∑

s′,c′

∣∣{s, c}m

〉
A({p, f, s′, c′, s, c}m)

〈
{s′, c′}m

∣∣



Density Matrix
In the color space we use a basis which is normalized but not 
orthogonal:

It is useful to introduce a dual basis               that is defined by 

1 =
∑

{c}m

∣∣{c}m

〉
D

〈
{c}m

∣∣1 =
∑

{c}m

∣∣{c}m

〉
D

〈
{c}m

∣∣

D

〈
{c′}m

∣∣{c}m

〉
= δ{c′}m

{c}m

and the completeness relations are 

and

〈
{c}m

∣∣{c}m

〉
= 1 but

〈
{c′}m

∣∣{c}m

〉
= O(1/N2

c ) for {c′}m != {c}m

∣∣{c}m

〉
D



Classical States
The set of functions                                     forms a vector space.A({p, f, s′, c′, s, c}m)

∣∣{p, f, s′, c′, s, c}m

)
Basis:

Completeness relation :

1 =
∑

m

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, s′, c′, s, c}m

)(
{p, f, s′, c′, s, c}m

∣∣

Inner product of the basis states:

where

(
{p, f, s′, c′, s, c}m

∣∣{p̃, f̃ , s̃′, c̃′, s̃, c̃}m̃

)
= δm,m̃ δ({p, f, s′, c′, s, c}m; {p̃, f̃ , s̃′, c̃′, s̃, c̃}m̃)

∫ [
d{p, f, s′, c′, s, c}m

]
≡

∫ [
d{p, f}m

] ∑

sa,s′
a,ca,c′

a

∑

sb,s′
b,cb,c′

b

m∏

i=1





∑

si,s′
i,ci,c′

i








Classical State
A physical state which is  related to the density matrix:

∣∣A
)

=
∫ [

d{p, f, s′, c′, s, c}m

]
A({p, f, s′, c′, s, c}m)

∣∣{p, f, s′, c′, s, c}m

)

or the vector corresponding to the measurement function 
(
F

∣∣{p, f, s′, c′, s, c}m

)
=

〈
{s′, c′}m

∣∣F ({p, f}m)
∣∣{s, c}m

〉

Then the cross section that corresponding to this measurement 
function is

σ[F ] =
(
F

∣∣A
)



Parton Shower Evolution

The evolution is given by 
a linear operator

Group decomposation 

We use an evolution variable e.g.:

Preserves the normalization

log
Q2

q2
= t ∈ [0,∞]

|A(t)) = U(t, t0)|A(t0))

U(t3, t2) U(t2, t1) = U(t3, t1)

(1|A(t0)) = 1 (1|U(t, t0)|A(t0)) = 1
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No-change operator

+

Splitting part
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dt2 U(t3, t2)H(t2) N(t2, t1)
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Parton Shower Evolution

The evolution is given by 
a linear operator

Group decomposation 

We use an evolution variable e.g.:

Preserves the normalization

log
Q2

q2
= t ∈ [0,∞]

|A(t)) = U(t, t0)|A(t0))

U(t3, t2) U(t2, t1) = U(t3, t1)

(1|A(t0)) = 1 (1|U(t, t0)|A(t0)) = 1

U(t3, t1) = N(t3, t1)︸ ︷︷ ︸
No-change operator

+

Splitting part
︷ ︸︸ ︷∫ t3

t1

dt2 U(t3, t2)H(t2) N(t2, t1)

Start with            cross section and iterate the evolution 
equation, say, twice:

2→ 2



No-change Operator
The operator              leaves the basis states 
unchanged

N(t′, t) |{p, f, s′, c′, s, c}m)

N(t′, t)|{p, f, s′c′, s, c}m) = ∆({p, f, c′, c}m; t′, t)︸ ︷︷ ︸
Sudakov factor

|{p, f, s′c′, s, c}m)

Consistently with the group decomposition property and with 
the initial condition                     for     we have∆N(t, t) = 1

∆({p, f, c′, c}m; t2, t1) = exp
(
−

∫ t2

t1

dτ ω(τ ; {p, f, c′, c}m)︸ ︷︷ ︸

)

related to the parton splitting



No-change Operator
From the normalization conditions 

(1|{p, f, s′, c′, s, c}m) =
〈
{s′}m

∣∣{s}m

〉〈
{c′}m

∣∣{c}m

〉

(1|U(t, t′)|{p, f, ...}m) = (1|{p, f, ...}m)

and

the relation between the splitting operator and
is 

ω(τ ; {p, f, c′, c}m)

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣{c}m

〉
ω(t, {p, f, c′, c}m) =

(
1
∣∣H(t)

∣∣{p, f, s′, c′, s, c}m

)

At this point we need to discuss the structure of          !H(t)



Splitting Operator
The splitting operator consists of two terms 

H(t) = HI(t) + V(t)

           describes the parton splitting and based on the factorization property 
of the matrix element. It increases the number of partons and changes spins 
and colors.

HI(t)

non-trivial color structure

(
1
∣∣HI(t)

∣∣{p, f, s′, c′, s, c}m

)
= 2

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣h(t, {p, f}m)
∣∣{c}m

〉
︸ ︷︷ ︸

At leading order level:

h(0)(t, {p, f}m) = 1P (t, {p, f}m)︸ ︷︷ ︸
collinear

+
∑

i,k
i !=k

Ti · TkSik(t; {p}m)︸ ︷︷ ︸
pure soft



Splitting Operator
The operator         represents the contributions of the virtual graphs. It keeps 
the number of partons, flavors, spins unchanged but changes the color.  

V(t)

V(t)
∣∣{p, f, s′, c′, s, c}m

)

=
∑

{c̃}m

∣∣{p, f, s′, c′, s, c̃}m

)
D

〈
{c̃}m

∣∣v(t, {p, f}m)
∣∣{c}m

〉 [
1− δ{c̃}m

{c}m

]

+
∑

{c̃′}m

∣∣{p, f, s′, c̃′, s, c}m

) 〈
{c′}m

∣∣v(t, {p, f}m)
∣∣{c̃′}m

〉
D

[
1− δ{c̃′}m

{c′}m

]

The singularities of the virtual graphs cancel those of the real emission 
graphs, thus the obvious choice is 

v({p, f}m) = −h({p, f}m)



Sudakov Exponent
The relation between the splitting operator and the Sudakov 
exponent is 

〈
{s′}m

∣∣{s}m

〉 〈
{c′}m

∣∣{c}m

〉
ω(t, {p, f, c′, c}m) =

(
1
∣∣H(t)

∣∣{p, f, s′, c′, s, c}m

)

From this we have

ω(t, {p, f, c′, c}m) =
D

〈
{c}m

∣∣h({p, f}m)
∣∣{c}m

〉
+

〈
{c′}m

∣∣h({p, f}m)
∣∣{c′}m

〉
D

h(0)(t, {p, f}m) = 1P (t, {p, f}m)︸ ︷︷ ︸
collinear

+
∑

i,k
i !=k

Ti · TkSik(t; {p}m)︸ ︷︷ ︸
pure soft

where



• The Sudakov exponent exponentiates the color 
conserving part of the inclusive splitting 
operator                     . Fortunately the leading color 
part always conserves the color.

• The subleading color part is not exponentiated but it 
is subtracted. These contributions are treated 
perturbatively like the splitting terms in         .   

• Thus we have two perturbative parameters: 

Comments

h(t, {p, f}m)

HI(t)

andαs
1

N2
c



Leading Color Approx.
Neglecting all the           contributions the color basis becomes 
orthogonal and the dual basis is identical to the color basis: 

1/N2
c

∣∣{c}m

〉
D

=
∣∣{c}m

〉
+O(1/N2

c )

V(t) = O(1/N2
c )No subtraction:

The Sudakov factor exponentiates the whole inclusive 
splitting function

ω(t, {p, f, c′, c}m) = 2
〈
{c}m

∣∣h({p, f}m)
∣∣{c}m

〉
+O(1/N2

c )



Splitting Operator
The splitting operator is based on the soft and collinear factorization 
formulas. At LO level we have

• The splitting kernel is organized according to the collinear splittings (even 
the soft radiations)

• This decomposition can be also done at higher order level.
• We need to define phase space mapping to get m+1 parton configurations 

from m parton configurations. This can be also done systematically even 
for higher order.

• It is important that the phase space mapping must be exact since the 
classical states are defined on phase space surface in the momentum space.

• The mapping must be consistent with the higher order;  e.g. we cannot use 
the Catani-Seymour dipole factorization and phase space mapping. 

HI(t) = Da(t) +Db(t) +
m∑

i=1

Di(t) +O(α2
s)



If we have an leading order shower than the 
corresponding hard configuration should  based on the 
tree level matrix elements.   

Shower Cross Section
The evolution starts from the kinematically simplest 
configuration and the shower cross section is

          represents the hadronization. Tuning is allowed 
only here.
D(tf)

σ[F ] =
(
F

∣∣D(tf)U(tf , t2)
∣∣M2

)



Adding Exact Matrix Elements

• Having the LO shower defined, we can calculate 
any cross section, 2-jet, 3-jet,...

• Only the            Born matrix elements are 
considered.

• For 3-jet we should consider at least the           
Born matrix elements. 

• Since      is large it would be useful to consider the 
contributions of            Born and            1-loop 
matrix elements in the 3-jet calculation.

2→ 2

2→ 3

2→ 32→ 4
αs



• The shower approximation relies on the small  
splittings.

• May be the exact matrix element would be better.

• But that lacks the Sudakov exponents.

Matching at Born Level

Standard shower Small      approximationpT |M|2

pT



Matching at Born Level

Standard shower Small      approximationpT |M|2

︸ ︷︷ ︸
Matrix element reweighting factor



Adjoint Splitting Operator

For multiple emission:

Let us define the operator          according to

Since           always increases the number of partons           
always decreases it. This operator is the fully exclusive version 
of the fix order calculation’s subtraction terms.

H†(t)

H†(t) = H†
I(t) + V†(t)

H†
I(t)HI(t)

(
F

∣∣H(t)
∣∣A

)
=

(
A

∣∣H†(t)
∣∣F

)

(
F

∣∣H(tm)H(tm−1) · · ·H(t1)
∣∣A

)

=
(
A

∣∣H†(t1) · · ·H†(tm−1)H†(tm)
∣∣F

)



Approximated Matrix Element
For a given m-parton configuration the Born level approximated 
matrix element is 

The matrix element reweighting factor is

and the reweighting operator is

(
Am

∣∣{p, f, ...}m

)
=

∫ tf

t2

dt3 · · ·
∫ tf

tm−1

dtm
(
M2

∣∣H†
I(t3)H

†
I(t4) · · ·H

†
I(tm)

∣∣{p, f, ...}m

)

wM = =






(
Mm

∣∣{p, f, ..}m

)
(
Am

∣∣{p, f, ...}m

) if Mm is known

1 otherwise

WM (tf , t2) =
∑

m

∫ [
d{p, f, ...}m

] ∣∣{p, f, ..}m

)(
{p, f, ..}m

∣∣

× wM ({p, f, s′, c′, s, c}m)



Approximated Matrix Element
For a given m-parton configuration the Born level approximated 
matrix element is 

The matrix element reweighting factor is

and the reweighting operator is

(
Am

∣∣{p, f, ...}m

)
=

∫ tf

t2

dt3 · · ·
∫ tf

tm−1

dtm
(
M2

∣∣H†
I(t3)H

†
I(t4) · · ·H

†
I(tm)

∣∣{p, f, ...}m

)

wM = =






(
Mm

∣∣{p, f, ..}m

)
(
Am

∣∣{p, f, ...}m

) if Mm is known

1 otherwise

WM (tf , t2) =
∑

m

∫ [
d{p, f, ...}m

] ∣∣{p, f, ..}m

)(
{p, f, ..}m

∣∣

× wM ({p, f, s′, c′, s, c}m)

=
∫ tf

t2

dt3

∫ tf

t3

dt4N(tf , t4)WM (tf , t2)

×HI(t4)N(t4, t3)HI(t3) N(t3, t2)
∣∣M2

)



Matching at Born level
At leading color level when                 we have 

Assuming that we know the            Born matrix elements   2→ 3

Expanding one step of the shower 
∣∣A(tf)

)
= N(tf , t2)

∣∣M2

)
+

∫ tf

t2

dt3 U(tf , t3)(HI(t3) + V(tt))N(t3, t2)
∣∣M2

)

∣∣AM (tf)
)

= N(tf , t2)
∣∣M2

)
+

∫ tf

t2

dt3 U(tf , t3)(WM (tf , t2)HI(t3) + V(tt))N(t3, t2)
∣∣M2

)

V(t) = 0
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∫ tf
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dt3 U(tf , t3)(HI(t3) + V(tt))N(t3, t2)
∣∣M2

)

∣∣AM (tf)
)

= N(tf , t2)
∣∣M2

)
+
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)
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Matching at Born Level
After some algebra

The second term doesn’t change the LL and NLL structure 

Assuming we know                                  thenM3,M4, ....,MN

∣∣AM (tf)
)

= U(tf , t2)
∣∣M2

)

+
N∑

m=3

∫ tf

t2

dt3

∫ tf

t3

dt4 · · ·
∫ tf

tm−1

dtm U(tf , tm)
[
WM (tf , t2),HI(tm)

]

×N(tm, tm−1)HI(tm−1)N(tm−1, tm−2) · · ·HI(t3) N(t3, t2)
∣∣M2

)

[
WM (tf , t2),HI(t3)

]∣∣M2

)
∼

∣∣M3

)
−HI(t3)

∣∣M2

)

∣∣AM (tf)
)

= U(tf , t2)
∣∣M2

)
︸ ︷︷ ︸

Standard shower

+
∫ tf

t2

dt3 U(tf , t3)
[
WM (tf , t2),HI(t3)

]
︸ ︷︷ ︸

WM (tf ,t2)HI(t3)−HI(t3)WM (tf ,t2)

N(t3, t2)
∣∣M2

)



︸ ︷︷ ︸
Sudakov reweighting factor

Matching at Born Level
There is another way to do the reweighting

W∆(tf ,t2; t) =
∑

m

∫ [
d{p, f, s′, c′, s, c}m

] ∣∣{p, f, ..}m

)(
{p, f, ..}m

∣∣

× lim
δ→0

∫ t

t2

dtm−1

∫ tm−1

t2

dtm−2 · · ·
∫ t4

t2

dt3

×
(
M2

∣∣N(t3, t2)H†
I(t3) · · ·N(t, tm−1)H†

I(t)
∣∣{p, f, ..}m

)
(
Am(tf , t2)

∣∣{p, f, s′, c′, s, c}m

)
+ δ



and at leading color level this is even simpler

The improved shower formulae is
∣∣A∆(tf)

)
= U(tf , t2)

∣∣M2

)
+

N∑

m=3

∫ tf

t2

dtmU(tf , tm)
[
W∆(tf , t2; tm)

∣∣Mm

)

−HI(tm)
∫ tm

t2

dt′N(tm, t′)W∆(tf , t2; t′)
∣∣Mm−1

)]

Matching at Born Level

∣∣A∆(tf)
)

= N(tf , t2)
∣∣M2

)
+

n−1∑

m=3

∫ tf

t2

dtm N(tf , tm)W∆(tf , t2; tm)
∣∣Mm

)

+
∫ tf

t2

dtn U(tf , tn)W∆(tf , t2; tn)
∣∣Mn

)



and at leading color level this is even simpler

The improved shower formulae is
∣∣A∆(tf)

)
= U(tf , t2)

∣∣M2

)
+

N∑

m=3

∫ tf

t2

dtmU(tf , tm)
[
W∆(tf , t2; tm)

∣∣Mm

)

−HI(tm)
∫ tm

t2

dt′N(tm, t′)W∆(tf , t2; t′)
∣∣Mm−1

)]

Matching at Born Level

∣∣A∆(tf)
)

= N(tf , t2)
∣∣M2

)
+

n−1∑

m=3

∫ tf

t2

dtm N(tf , tm)W∆(tf , t2; tm)
∣∣Mm

)

+
∫ tf

t2

dtn U(tf , tn)W∆(tf , t2; tn)
∣∣Mn

)



CKKW without Equations

Two step calculation

• CKKW break evolution into 0 < t < tini and tini < t < tf.

CKKW use improved weighting for 0 < t < tini

• Nth term has N + 1 jets at scale tini.

• Last term term has > 4 jets at scale tini, so is pretty small.

Two steps calculation

CKKW break the evolution 
into                      and 0 < t < tini tini < t < tf

- CKKW use improve weighting for
- For                       they have standard shower 
   with transverse momentum veto 
- They use the kT algorithm and NLL Sudakov
   factors to do the reweighting. 

0 < t < tini

tini < t < tf
CKKW@NLO
ZN and D. Soper,
hep-ph/0503053



NLO Calculations
The NLO fix order calculations can be organized by the following way 

σNLO =
∫

N
dσB +

∫

N+1

[
dσR − dσA

]

+
∫

N

[
dσB ⊗ I(ε) + dσV

]
ε=0

+
∫

N
dσB ⊗ [K + P (µF )]

The Born (        ) and the real (        ) are based on the N and N+1 parton 
matrix elements, respectively and         is the contribution of the virtual 
graphs. The operators                    are universal.

dσB dσR

dσV

I(ε),K,P

It is useful to define the subtraction term based on the shower splitting 
operator

dσA ∼
∫ ∞

0
dt

(
MN

∣∣H†
I(t)

∣∣{p, f, ...}N+1

)



Matching at NLO level
Let us calculate the N-jet cross section. The matrix element improved 
cross section is

Expanding it in      then we have αs
(
FN

∣∣A∆

)
=

∫

N
dσB +

∫

N+1

[
dσR − dσA

]

+
∫

N

[
dσS [V(t)] + dσB W (1)

∆

]
+O(α2

s)

[-- It is too long to display. --]

(
FN

∣∣A∆(tf)
)

=
∫ tf

t2

dtN
(
FN

∣∣N(tf , tN )W∆(tf , t2; tN )
∣∣MN

)

+
∫ tf

t2

dtN+1

(
FN

∣∣U(tf , tN+1)W∆(tf , t2; tN+1)
∣∣MN+1

)

+
[
· · · V(t) · · ·

]
︸ ︷︷ ︸

+O
[
V(t)2

]



Matching at NLO level

(
FN

∣∣ANLO
∆ (tf)

)
=

(
FN

∣∣A∆(tf)
)
−

[
· · · V(t) · · ·

]

+
∫ tf

t2

dtN
(
FN

∣∣U(tf , tN )W∆(tf , t2; tN )
∣∣M(1)

N

)

Fixing the shower formulae by subtracting the approximated and adding 
correct 1-loop contributions, thus we have

where
∫

[d{s′, c′, s, c}N ]
(
M (1)

N

∣∣{p, f, ...}N

)
∼ −αs

2π
W (1)

∆ |MN |2

+ |MN |2 ⊗
(
K + P (µF )

)
+

[
|MN |21−loop + |MN |2 ⊗ I(ε)

]

ε=0
,



Conclusions

• We defined a very general formalism to define and implement parton 
shower algorithm.

• We can consider spin correlation and color correlation beyond the 
leading color approximation. 

• The treatment of the subleading color part is still perturbative (not 
exponentiated). 

• The algorithm is capable to deal with the higher order corrections in  
once the splitting kernels are known.

• We have general method to match the LO shower to Born and NLO 
matrix elements.

The things I talked about:

αs



Conclusion

• The algorithm is Lorentz covariant/invariant.

• Based on exact phase space. 

• No technical cuts, parameters. Only the infrared cutoff parameter.

• Color coherence (angular ordering) is naturally provided without 
forced angular ordering, vetoing, or other tricks. No azimuthal 
averaging. 

• The evolution parameter doesn’t have to be special. Any infrared 
sensitive parameter is good. Use the simplest, say virtuality.

• Since we defined           operator, we defined a new NLO subtraction 
scheme for fix order NLO calculation.

The things I didn’t talk about:

H†
I(t)



Conclusions

• The algorithm is Lorentz covariant/invariant.

• Based on exact phase space factorization.

• Splitting operator is defined fully exclusive way. One can do MC 
helicity and color sum in the NLO calculation.

• For N-jet calculation the number of the subtraction terms 
is                                 . Compared to the Catani-Seymour dipole 
subtraction method                                  . 

• Since we have less counter-terms we expect better numerical behavior. 

About this new NLO scheme

(N + 1)(N + 4)/2
(N + 1)2(N + 4)/2


