Strange, Charm and Bottom masses at NNLO and $\ensuremath{\mathsf{N}}^3\ensuremath{\mathsf{LO}}$

J.H. Kühn

SFB TR-9

I. Sum Rules with Charm and Bottom Quarks: recent data and N^3LO calculations (Chetyrkin, JK, Steinhauser, Sturm)

II. m_c and m_b : overview

III. m_s from τ -decays and sum rules

I Sum Rules with Charm and Bottom Quarks

Main Idea

J.H. Kühn/ Cracow Epiphany Conference

experiment	energy [GeV]	date	systematic error
BES	2 - 5	2001	4%
MD-1	7.2 - 10.34	1996	4%
CLEO	10.52	1998	2%
PDG	J/ψ		(7%) 2%
PDG	ψ^{\prime}		(9%) 3.7%
PDG	$\psi^{\prime\prime}$		(15%)
BES	ψ'' region	2006	4%

m_Q from SVZ Sum Rules, Moments and Tadpoles

Some definitions

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$
$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu} \right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n \, z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

Coefficients \bar{C}_n up to n = 8 known analytically in order α_s^2 (Chetyrkin, JK, Steinhauser, 1996) recently up to n = 30!(Boughezal, Czakon, Schutzmeier) recently also \overline{C}_0 and \overline{C}_1 in order α_s^3 (four loops!) ➡ reduction to master integrals through Laporta algorithm (Chetyrkin, JK, Sturm; confirmed by Boughezal, Czakon, Schutzmeier) evaluation of master integrals numerically through difference equations (30 digits) or Padé method or analytially in terms of transzendentals (Schröder + Vuorinen, Chetyrkin et al., Schröder + Steinhauser, Laporta, Broadhurst, Kniehl et al.

Analysis in NNLO

Coefficients \overline{C}_n from three-loop one-scale tadpole amplitudes with "arbitrary" power of propagators; FORM-program MATAD

Analysis in N^3LO

Algebraic reduction to 13 master integrals (Laporta algorithm); numerical evaluation of master integrals

 \bigcirc : heavy quarks, \bigcirc : light quarks, n_f : number of active quarks

 \implies About 700 Feynman-diagrams

 \bar{C}_n depend on the charm quark mass through $l_{m_c} \equiv \ln(m_c^2(\mu)/\mu^2)$

$$\bar{C}_{n} = \bar{C}_{n}^{(0)} + \frac{\alpha_{s}(\mu)}{\pi} \left(\bar{C}_{n}^{(10)} + \bar{C}_{n}^{(11)} l_{m_{c}} \right) + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \left(\bar{C}_{n}^{(20)} + \bar{C}_{n}^{(21)} l_{m_{c}} + \bar{C}_{n}^{(22)} l_{m_{c}}^{2} \right) + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{3} \left(\bar{C}_{n}^{(30)} + \bar{C}_{n}^{(31)} l_{mc} + \bar{C}_{n}^{(32)} l_{mc}^{2} + \bar{C}_{n}^{(33)} l_{ms}^{3} \right)$$

n	$\bar{C}_n^{(0)}$	$\bar{C}_n^{(10)}$	$\bar{C}_n^{(11)}$	$\bar{C}_n^{(20)}$	$\bar{C}_n^{(21)}$	$\bar{C}_n^{(22)}$	$ar{C}_n^{(30)}$	$\bar{C}_n^{(31)}$	$\bar{C}_n^{(32)}$	$\bar{C}_n^{(33)}$
1	1.0667	2.5547	2.1333	2.4967	3.3130	-0.0889	-5.6404	4.0669	0.9590	0.0642
2	0.4571	1.1096	1.8286	2.7770	5.1489	1.7524		6.7216	6.4916	-0.0974
3	0.2709	0.5194	1.6254	1.6388	4.7207	3.1831		7.5736	13.1654	1.9452
4	0.1847	0.2031	1.4776	0.7956	3.6440	4.3713		4.9487	17.4612	5.5856

Coefficients of the photon polarization function in the $\overline{\text{MS}}$ scheme. $n_f = 4$ has been adopted which is appropriate for the charm threshold. Define the moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}}\right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \bar{C}_{n}$$

Perturbation theory: \bar{c}_n is function of α_s and $\ln \frac{m_c^2}{\mu^2}$ dispersion relation:

$$\Pi_{c}(q^{2}) = \frac{q^{2}}{12\pi^{2}} \int ds \frac{R_{c}(s)}{s(s-q^{2})} + \text{subtraction}$$
$$\Rightarrow \mathcal{M}_{n}^{\exp} = \int \frac{ds}{s^{n+1}} R_{c}(s)$$

constraint: $\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\operatorname{th}}$

$r > m_c$

SVZ:

 $\mathfrak{M}_n^{\mathrm{th}}$ can be reliably calculated in pQCD: low *n*: dominated by scales of $\mathfrak{O}(2m_Q)$

- fixed order in α_s is sufficient, in particular no resummation of 1/v terms from higher orders required
- condensates are unimportant
- pQCD in terms of short distance mass : $m_c(3 \text{ GeV}) \Rightarrow m_c(m_c)$ stable expansion : no pole mass or closely related definition (1S-mass, potential-subtracted mass) involved
- moments available in NNLO
- and \bar{C}_0 , \bar{C}_1 in N³LO

update compared to NPB619 (2001)

experiment : $\alpha_s = 0.1187 \pm 0.0020$ $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & Babar $\psi(3770)$ from BES [theory]: N³LO for n=1 N³LO - estimate for n =2,3,4

include condensates

$$\delta \mathcal{M}_n^{\rm np} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle \, a_n \, \left(1 + \frac{\alpha_s}{\pi} \bar{b}_n \right) \tag{1}$$

careful extrapolation of R_{uds} including m_c dependent terms

Preliminary results (m_c)

\overline{n}	$m_c(3 \text{ GeV})$	exp	$lpha_s$	μ	np	total	$\delta \bar{C}_n^{30}$
1	0.989	0.010	0.008	0.001	0.001	0.013	
2	0.984	0.006	0.013	0.003	0.000	0.015	0.006
3	0.990	0.005	0.013	0.012	0.002	0.019	0.010
4	1.022	0.003	0.007	0.036	0.007	0.037	0.014

$$n = 1$$
:

$$m_c(3 \text{GeV}) = 989 \pm 13 \text{ MeV}$$

 $m_c(m_c) = 1288 \pm 11 \text{ MeV}$

update on m_b

theory: N³LO experiment: $\alpha_s = 0.1187 \pm 0.0020$ $\Gamma_e(\Upsilon, \Upsilon', \Upsilon'')$ from CLEO improved analysis of threshold region

preliminary results (m_b)

n	$m_b(10 \text{ GeV})$	exp	α_s	μ	np	total	$\delta \bar{C}_n^{30}$
1	3.596	0.019	0.007	0.001	0.000	0.020	
2	3.613	0.013	0.012	0.001	0.000	0.017	0.005
3	3.623	0.010	0.014	0.010	0.000	0.020	0.008
4	3.638	0.008	0.014	0.026	0.000	0.031	0.012

n = 1:

 $m_b(10 \text{GeV}) = 3596 \pm 20 \text{ MeV}$ $m_b(m_b) = 4151 \pm 21 \text{ MeV}$

Summary on m_c and m_b

➡ drastic improvement in δm_c , δm_b from moments with low n in N²LO ➡ direct determination of short-distance mass

improved measurements of $\Gamma_e(J/\psi, \psi')$ and $\Gamma_e(\Upsilon, \Upsilon', \Upsilon'')$ improved measurement of charm threshold region reanalysis of bottom threshold region and new N^3LO results lead to significant improvements

preliminary results (based on n = 1)q:

 $m_c(3 \text{ GeV}) = 0.989(13) \text{ GeV}$ $m_c(m_c) = 1.288(11) \text{ GeV}$ $m_b(10 \text{ GeV}) = 3.596(20) \text{ GeV}$ $m_b(m_b) = 4.151(21) \text{ GeV}$

(old result: $m_c(m_c) = 1.304(27)GeV \ m_b(m_b) = 4.191(51)GeV$) J.H. Kühn/ Cracow Epiphany Conference II m_c and m_b : other characteristic results

no review

charm

- moments of *B*-decay distributions (hadron mass, lepton energy) HQE up to $O(1/m_b^3)$, pQCD up to $O(\alpha_s^2\beta_0)$ 1240 ± 70 O. Buchmüller, Flächer 1224 ± 17 ± 54 Hoang, Manohar
- Lattice, from D_s (quenched $\Rightarrow \pm (40 60)$) $1260 \pm 40 \pm 120$ Becirevic, Lubicz, Martinelli 1301 ± 34 Rolf, Sint

bottom

- moments of *B*-decay distributions (hadron mass, lepton energy) HQE up to $O(1/m_b^3)$, pQCD up to $O(\alpha_s^2\beta_0)$ 4200 ± 40 Buchmüller, Flächer 4170 ± 30 Bauer et al.
- Υ -spectroscopy (1S-state), pNRQCD + nonperturbative effects 4346 \pm 70 Penin, Steinhauser (N^3LO) 4210 \pm 90 \pm 25 Pineda (N^2LO)

III m_s from τ -decays and sum rules

$$\tau \to \nu s \bar{d}$$

input: moments of $m(s\bar{d})$ (ALEPH, OPAL) V_{us} (Czarnecki, Marciano, Sirlin)phenomenology(Gamiz et al)pQCD in $\mathcal{O}(\alpha^3)$ (Baikov, Chetyrkin, JK)

(finite part of massless four-loop correlator)

$$\Rightarrow ms(M_{\tau}) = 100 \pm {\binom{+5}{-3}}_{\text{theo}} \pm {\binom{+17}{-19}}_{\text{rest}}$$

pseudoscalar sum rules in $\mathcal{O}(\alpha_s^4)$

 $\bar{m}_s(2 \,\text{GeV}) = 105 \pm 6(\text{param}) \pm 7(\text{hadr})$

Chetyrkin, Khodjamirian

Method	$\overline{m}_s(2 \text{ GeV})$	Ref.
	[MeV]	
Pseudoscalar Borel sum rule	$105\pm6\pm7$	Chetyrkin
Pseudoscalar FESR	100 ± 12	Maltman
Scalar Borel sum rule	99 ± 16	Jamin
Vector FESR	139 ± 31	Eidemüller
Spectral function	> 77	Baikov
	81 ± 22	Gamiz
Hadronic τ decays	96^{+5+16}_{-3-18}	Baikov
	104 ± 28	Narison
$ au$ decays \oplus sum rules	99 ± 28	Narison
	97 ± 22	Della Morte
Lattice QCD $(n_f = 2)$	100 -130	Gockeler
	$101\pm8^{+25}_{-0}$	Becirevic
	$76\pm3\pm7$	Aubin
Lattice QCD $(n_f = 3)$	86.7 ± 5.9	Ishikawa
	$87 \pm 4 \pm 4$	Mason
PDG04 average	80 -130	Eidelman

Summary

new multiloop results from pQCD + improved data (preliminary analysis)

 $m_c(3 \text{ GeV}) = 989 \pm 13 \text{ MeV}$ $m_b(10 \text{ GeV}) = 3596 \pm 20 \text{ MeV}$ $m_b(m_b) = 4151 \pm 21 \text{ MeV}$

 $m_c(m_c) = 1288 \pm 11 \text{ MeV}$

significantly reduced errors, consistent with other determinations, but more precise

 $m_s(2 \text{ GeV}) = 105 \pm 10 \text{ MeV}$

on the basis of N^3LO pseudoscalar sumrules