## QCD-EW corrections interplay in Drell-Yan like single W and Z production at LHC

### Renat SADYKOV JINR, Dubna on behalf of SANC group

Epiphany Conference, Cracow, January 4-6, 2007

Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

## **SANC** v1.00

Server  $\leftrightarrow$  client realization, SANC IDE.

SANC version v1.00 is accessible from two servers:

at Dubna http://sanc.jinr.ru/ (159.93.75.10)

and CERN http://pcphsanc.cern.ch/ (137.138.180.42)

Client may be downloaded from these two sites, see User Guide in:

Ref.: SANCscope — v.1.00 A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, G. Nanava and W. von Schlippe, Comput. Phys. Comm. 174 (2006) 481; hep-ph/0411186 See also D. Bardin report on the ATLAS Monte-Carlo Meeting (February 20, 2006): http://indico.cern.ch/conferenceDisplay.py?confld=a06589.

## Outline

## ONE-LOOP EW CORRECTIONS

- CHARGED CURRENT
- NEUTRAL CURRENT
- Present status, v.1.00
- Comparisons:
  - 4th Les Houches Workshop Physics at TeV Colliders: DY, EW CC
  - TEV4LHC: DY, EW CC, NC

## ONE-LOOP QCD CORRECTIONS

QCD-EW INTERPLAY

CONCLUSIONS

< ≣ >

SOR

## Introduction

## We will consider QCD and EW one-loop corrections to the next processes:

Neutral current Drell-Yan production:

$$p[q] + p[ar{q}] 
ightarrow \gamma, \mathbf{Z} 
ightarrow X + \ell^+ + \ell^-(+\gamma) \ p[\gamma] + p[q] 
ightarrow \gamma, \mathbf{Z} 
ightarrow X + \ell^+ + \ell^-(+\gamma) \ (\ell = e, \mu)$$

Charged current Drell-Yan production:

$$\begin{array}{l} p[q] + p[\bar{q'}] \rightarrow \mathbf{W}^{\pm} \rightarrow X + \ell^{\pm} + \nu_{\ell}(+\gamma) \\ p[\gamma] + p[q] \rightarrow \mathbf{W}^{\pm} \rightarrow X + \ell^{\pm} + \nu_{\ell}(+\gamma) \\ (\ell = e, \mu) \end{array}$$

く 臣 入 人 臣 入

## Born level diagrams for Drell-Yan like W and Z boson production



## SANC, DY, EW, CHARGE CURRENT

# $\gamma$ — parton! inverse bremsstrahlung

 $\begin{pmatrix} -\\ qq'\\ \gamma q \end{pmatrix}$ 

Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

## SANC, DY, EW, CHARGE CURRENT

$$\begin{pmatrix} q\bar{q'} \\ \gamma q \end{pmatrix} \otimes \begin{pmatrix} p_T^{\ell} \\ M_T^{\ell\nu} \end{pmatrix}$$
$$M_T^{\ell\nu} = \sqrt{2p_T^{\ell}p_T^{\nu}(1 - \cos\varphi_{\ell\nu})}$$

< D > Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

=

5990

## SANC, DY, EW, CHARGE CURRENT

# $\begin{pmatrix} \bar{q}\bar{q'} \\ \gamma \bar{q} \end{pmatrix} \otimes \begin{pmatrix} \bar{p}_T^\ell \\ M_T^{\ell\nu} \end{pmatrix} \otimes \begin{pmatrix} e \\ \mu \end{pmatrix}$ - $\gamma$ recombination $\mu$ — bare

Sa Cr

We participated in tuned comparison within 2005 Les Houches Workshop.

List of participants:

- DK S. Dittmaier and M. Krämer (MPI)
- HORACE C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini (PAVIA)
- SANC SANC group (JINR)
- W(Z)GRAD2 U. Baur, D. Wackeroth (FNAL)
- Ref.: C. Buttar et al, Les Houches Physics at TEV colliders 2005, Standard Model, QCD, EW and Higgs working group: Summary report, 61-67, hep-ph/0604120.

(日) (周) (王) (王)

#### The relevant input parameters are

 $G_{\mu} = 1.16637 \times 10^{-5} \text{GeV}^{-2}, \quad \alpha(0) = 1/137.03599911,$  $\Gamma_{\rm W} = 2.124 {\rm GeV}.$  $M_W = 80.425 GeV.$  $\alpha_{\rm e} = 0.1187.$  $M_{Z} = 91.1876 \text{GeV}.$  $\Gamma_{\rm Z} = 2.4952 {\rm GeV}.$  $M_{\rm H} = 115 {\rm GeV}.$  $m_e = 0.51099892 MeV.$  $m_{\mu} = 105.658369 \text{GeV}$ .  $m_{\tau} = 1.77699 \text{GeV}.$  $m_c = 1.2 \text{GeV}.$  $m_{11} = 0.066 \text{GeV}.$  $m_{t} = 178 GeV.$  $m_{d} = 0.066 GeV.$  $m_{e} = 150 MeV.$  $m_{\rm b} = 4.3 \text{GeV}.$  $|V_{us}| = 0.222$ ,  $|V_{ud}| = 0.975.$  $|V_{cd}| = 0.222$ ,  $|V_{cs}| = 0.975.$ 

The lowest order cross-section is parametrized in " $G_{\mu}$  scheme" ( $\alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_W^2(1-M_W^2/M_Z^2)/\pi$ ). In the relative radiative corrections, however,  $\alpha(0)$  is used.

We use the set of PDF's "MRST2004QED".

### The set of lepton identification cuts is

 $\label{eq:pt_tau} \mathbf{P}_{\mathrm{T}}^{\ell} > 25 \mathrm{GeV} \text{,} \qquad \qquad \mathbf{P}_{\mathrm{T}}^{\mathrm{missing}} > 25 \mathrm{GeV} \text{,} \qquad \qquad |\eta_{\ell}| < 1.2.$ 

For electrons the following photon recombination procedure is considered:

- $\blacksquare$  Photons with a rapidity  $|\eta_{\gamma}|>2.5$  are treated as invisible.
- If the photon survived the first step, and if the resolution  $R_{\ell\gamma} = \sqrt{(\eta_{\ell} \eta_{\gamma})^2 + \phi_{\ell\gamma}^2}$  is smaller than 0.1 then photon is recombined with the charged lepton.

#### For muons bare setup is used.

소리가 소리가 소문가 소문가 드문

## $\delta$ definition

We produced the distributions for cross-section  $\sigma$  and correction  $\delta$ . where the last is defined by  $\delta = \sigma^{1-loop}/\sigma^{Born} - 1$  for NLO EW corrections and by  $\delta = \sigma^{\gamma q} / \sigma^{\textit{Born}}$  for corrections originating from the photon induced process.

〈同〉 〈ヨ〉 〈ヨ〉

## Les Houches Workshop, EW, CC, $\delta$ [%]



< 🗗 🕨

< E

5990

## **CC DY:** $\sigma$ , $P_T^{\ell}$ distribution



## **CC DY:** $\delta$ , $P_T^{\ell}$ distribution



## **CC DY:** $\sigma$ , $M_T^{\ell\nu}$ distribution



## **CC DY:** $\delta$ , $M_T^{\ell\nu}$ distribution



## **CC** inverse bremsstrahlung: comparison between SANC and DK

| $P_{T,\ell}/GeV$                                                                                                                                                                                                                                                                        | $25 - \infty$                                                                         | $50 - \infty$                                                                     | $100 - \infty$                                                                                                             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| $\sigma_0/{ m pb}$                                                                                                                                                                                                                                                                      |                                                                                       |                                                                                   |                                                                                                                            |  |  |
| DK                                                                                                                                                                                                                                                                                      | +2112.2(1)                                                                            | +13.152(2)                                                                        | +0.9452(1)                                                                                                                 |  |  |
| SANC                                                                                                                                                                                                                                                                                    | +2112.22(2)                                                                           | +13.1507(2)                                                                       | +0.94506(1)                                                                                                                |  |  |
| $\sigma_{\gamma q}/pb$                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                   |                                                                                                                            |  |  |
| DK                                                                                                                                                                                                                                                                                      | +1.50(2)                                                                              | +0.689(1)                                                                         | +0.1238(1)                                                                                                                 |  |  |
| SANC                                                                                                                                                                                                                                                                                    | +1.566(1)                                                                             | +0.6890(4)                                                                        | +0.12374(6)                                                                                                                |  |  |
| $\delta_{\gamma q} / \%$                                                                                                                                                                                                                                                                |                                                                                       |                                                                                   |                                                                                                                            |  |  |
| DK                                                                                                                                                                                                                                                                                      | +0.071(1)                                                                             | +5.24(1)                                                                          | +13.10(1)                                                                                                                  |  |  |
| SANC                                                                                                                                                                                                                                                                                    | +0.07414(5)                                                                           | +5.239(3)                                                                         | + <b>13.091(6</b> )                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                   |                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                   |                                                                                                                            |  |  |
| $P_{T,\ell}/GeV$                                                                                                                                                                                                                                                                        | $200 - \infty$                                                                        | $500 - \infty$                                                                    | $1000 - \infty$                                                                                                            |  |  |
| $\frac{P_{T,\ell}/GeV}{\sigma_0/pb}$                                                                                                                                                                                                                                                    | $200 - \infty$                                                                        | $500 - \infty$                                                                    | $1000 - \infty$                                                                                                            |  |  |
| $P_{T,\ell}/GeV$<br>$\sigma_0/pb$<br>DK                                                                                                                                                                                                                                                 | $200 - \infty$<br>+0.11511(2)                                                         | $500 - \infty$<br>+0.0054816(3)                                                   | $1000 - \infty$<br>+0.00026212(1)                                                                                          |  |  |
| $\frac{P_{T,\ell}/\text{GeV}}{\sigma_0/\text{pb}}$ DK SANC                                                                                                                                                                                                                              | $200 - \infty$<br>+0.11511(2)<br>+0.115106(1)                                         | $500 - \infty$<br>+0.0054816(3)<br>+0.00548132(6)                                 | $1000 - \infty$<br>+0.00026212(1)<br>+0.000262108(3)                                                                       |  |  |
| $\begin{array}{c} \mathbf{P}_{\mathrm{T},\ell}/\mathrm{GeV} \\ \sigma_0/\mathrm{pb} \\ \mathbf{DK} \\ \mathbf{SANC} \\ \sigma_{\mathrm{Yq}}/\mathrm{pb} \end{array}$                                                                                                                    | $200 - \infty$<br>+0.11511(2)<br>+0.115106(1)                                         | $500 - \infty$<br>+0.0054816(3)<br>+0.00548132(6)                                 | $\begin{array}{l} 1000-\infty\\ +0.00026212(1)\\ +0.000262108(3) \end{array}$                                              |  |  |
| $\begin{array}{c} \mathbf{P}_{\mathrm{T},\ell}/\mathrm{GeV}\\ \sigma_{0}/\mathrm{pb}\\ \mathbf{DK}\\ \mathbf{SANC}\\ \sigma_{\gamma\mathbf{q}}/\mathrm{pb}\\ \mathbf{DK} \end{array}$                                                                                                   | $200 - \infty$<br>+0.11511(2)<br>+0.115106(1)<br>+0.01892(2)                          | $500 - \infty$<br>+0.0054816(3)<br>+0.00548132(6)<br>+0.0007839(5)                | $1000 - \infty$ +0.00026212(1) +0.000262108(3) +0.00003117(3)                                                              |  |  |
| $\begin{array}{c} \mathbf{P}_{\mathrm{T},\ell}/\mathrm{GeV} \\ \sigma_{0}/\mathrm{pb} \\ \mathbf{DK} \\ \mathbf{SANC} \\ \sigma_{\gamma q}/\mathrm{pb} \\ \mathbf{DK} \\ \mathbf{SANC} \\ \mathbf{SANC} \end{array}$                                                                    | $200 - \infty$ +0.11511(2) +0.115106(1) +0.01892(2) +0.01891(1)                       | $500 - \infty$ +0.0054816(3) +0.00548132(6) +0.0007839(5) +0.0007838(2)           | $\begin{array}{r} 1000-\infty\\ +0.00026212(1)\\ +0.000262108(3)\\ +0.00003117(3)\\ +0.00003118(1)\end{array}$             |  |  |
| $\begin{array}{c} \mathbf{P}_{\mathrm{T},\ell}/\mathrm{GeV} \\ \sigma_{0}/\mathrm{pb} \\ \mathbf{DK} \\ \mathbf{SANC} \\ \sigma_{\gamma q}/\mathrm{pb} \\ \mathbf{DK} \\ \mathbf{SANC} \\ \mathbf{SANC} \\ \delta_{\gamma q}/\% \end{array}$                                            | $200 - \infty$ +0.11511(2)<br>+0.115106(1)<br>+0.01892(2)<br>+0.01891(1)              | $500 - \infty$ +0.0054816(3)<br>+0.00548132(6)<br>+0.0007839(5)<br>+0.0007838(2)  | $\begin{array}{l} 1000-\infty\\ +0.00026212(1)\\ +0.000262108(3)\\ +0.00003117(3)\\ +0.00003118(1) \end{array}$            |  |  |
| $\begin{array}{c} \mathbf{P}_{\mathrm{T},\ell}/\mathrm{GeV}\\ \mathbf{\sigma}_{0}/\mathrm{pb}\\ \mathbf{DK}\\ \mathrm{SANC}\\ \boldsymbol{\sigma}_{\gamma\mathbf{q}}/\mathrm{pb}\\ \mathbf{DK}\\ \mathrm{SANC}\\ \boldsymbol{\delta}_{\gamma\mathbf{q}}/\%\\ \mathbf{DK}\\ \end{array}$ | $200 - \infty$ +0.11511(2)<br>+0.115106(1)<br>+0.01892(2)<br>+0.01891(1)<br>+16.44(2) | $500 - \infty$ +0.0054816(3) +0.00548132(6) +0.0007839(5) +0.0007838(2) +14.30(1) | $\begin{array}{c} 1000-\infty\\ +0.00026212(1)\\ +0.000262108(3)\\ +0.00003117(3)\\ +0.00003118(1)\\ +11.89(1)\end{array}$ |  |  |

- < ≣ →

=

f 🕨 🕨

5990

## **CC** inverse bremsstrahlung: comparison between SANC and DK

| $M_{T,\nu_{\ell}\ell}/GeV$                                                                                                                                                                                                   | $50 - \infty$                                                        | $100 - \infty$                                                                                 | $200 - \infty$                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $\sigma_0/\text{pb}$                                                                                                                                                                                                         |                                                                      |                                                                                                | •                                                                                                 |
| DK                                                                                                                                                                                                                           | +2112.2(1)                                                           | +13.152(2)                                                                                     | +0.9452(1)                                                                                        |
| $\sigma_{\gamma q}/\text{pb}$                                                                                                                                                                                                |                                                                      |                                                                                                |                                                                                                   |
| DK                                                                                                                                                                                                                           | +1.198(6)                                                            | +0.01772(1)                                                                                    | +0.002406(1)                                                                                      |
| SANC                                                                                                                                                                                                                         | +1.264(1)                                                            | +0.017749(3)                                                                                   | +0.0023976(2)                                                                                     |
| $\delta_{\gamma q} / \%$                                                                                                                                                                                                     |                                                                      |                                                                                                |                                                                                                   |
| DK                                                                                                                                                                                                                           | +0.0567(3)                                                           | +0.1347(1)                                                                                     | +0.2546(1)                                                                                        |
| SANC                                                                                                                                                                                                                         | +0.05321(5)                                                          | +0.13495(2)                                                                                    | +0.25366(5)                                                                                       |
|                                                                                                                                                                                                                              |                                                                      |                                                                                                |                                                                                                   |
| N. 10.11                                                                                                                                                                                                                     | <b>X</b> 0.0                                                         | 1000                                                                                           | 2000                                                                                              |
| $\mathrm{M}_{\mathrm{T},\nu_{\ell}\ell}/\mathrm{GeV}$                                                                                                                                                                        | $500 - \infty$                                                       | $1000 - \infty$                                                                                | $2000 - \infty$                                                                                   |
| ${ m M_{T,  u_{\ell}\ell}/GeV} \over \sigma_0/{ m pb}$                                                                                                                                                                       | $500 - \infty$                                                       | $1000 - \infty$                                                                                | $2000 - \infty$                                                                                   |
| ${ m M_{T,  u_{\ell}\ell}/GeV} \ \sigma_0/{ m pb} \ { m DK}$                                                                                                                                                                 | $500 - \infty$<br>+0.057730(5)                                       | $1000 - \infty$<br>+0.0054816(3)                                                               | $2000 - \infty$<br>+0.00026212(1)                                                                 |
| $\frac{M_{T,\nu_{\ell}\ell}/\text{GeV}}{\sigma_0/\text{pb}}$ $\frac{DK}{\sigma_{\gamma q}/\text{pb}}$                                                                                                                        | $500 - \infty$<br>+0.057730(5)                                       | $1000 - \infty$<br>+0.0054816(3)                                                               | $2000 - \infty$<br>+0.00026212(1)                                                                 |
| $\begin{array}{c} \mathrm{M}_{\mathrm{T},\nu_{\ell}\ell}/\mathrm{GeV}\\ \overline{\sigma_{0}/\mathrm{pb}}\\ \overline{\mathrm{DK}}\\ \overline{\sigma_{\gamma\mathrm{q}}/\mathrm{pb}}\\ \overline{\mathrm{DK}} \end{array}$  | $500 - \infty$<br>+0.057730(5)<br>+0.00019241(6)                     | $1000 - \infty$<br>+0.0054816(3)<br>+0.000017908(5)                                            | $2000 - \infty$<br>+0.00026212(1)<br>+0.000008194(3)                                              |
| $\begin{array}{c} M_{T,\nu_{\ell}\ell}/\text{GeV} \\ \sigma_0/\text{pb} \\ DK \\ \sigma_{\gamma q}/\text{pb} \\ DK \\ SANC \end{array}$                                                                                      | $500 - \infty$<br>+0.057730(5)<br>+0.00019241(6)<br>+0.00019134(1)   | $1000 - \infty$<br>+0.0054816(3)<br>+0.000017908(5)<br>+0.000017788(1)                         | $\begin{array}{l} 2000-\infty\\ +0.00026212(1)\\ +0.000008194(3)\\ +0.0000081102(4) \end{array}$  |
| $\frac{M_{T,\nu_{\ell}\ell}/\text{GeV}}{\sigma_0/\text{pb}}$ DK $\sigma_{\gamma q}/\text{pb}$ DK SANC $\delta_{\gamma q}/\%$                                                                                                 | $500 - \infty$<br>+0.057730(5)<br>+0.00019241(6)<br>+0.00019134(1)   | $\begin{array}{l} 1000-\infty\\ +0.0054816(3)\\ +0.000017908(5)\\ +0.000017788(1) \end{array}$ | $\begin{array}{l} 2000-\infty\\ +0.00026212(1)\\ +0.000008194(3)\\ +0.00000081102(4) \end{array}$ |
| $ \begin{array}{c} M_{\mathrm{T},\nu_{\ell}\ell}/\mathrm{GeV} \\ \sigma_{0}/\mathrm{pb} \\ \mathrm{DK} \\ \sigma_{\gamma q}/\mathrm{pb} \\ \mathrm{DK} \\ \mathrm{SANC} \\ \delta_{\gamma q}/\% \\ \mathrm{DK} \end{array} $ | $500 - \infty$ +0.057730(5) +0.00019241(6) +0.00019134(1) +0.3333(1) | $1000 - \infty$ +0.0054816(3) +0.00017908(5) +0.000017788(1) +0.3267(1)                        | $2000 - \infty$ +0.00026212(1) +0.000008194(3) +0.0000081102(4) +0.3126(1)                        |

< ∃ >

5990

















## **CC DY:** $\delta$ , $P_T^{\ell}$ distribution



## **CC DY:** $\delta$ , $M_T^{\ell\nu}$ distribution



## SANC, DY, EW, NEUTRAL CURRENT

# $\gamma$ — parton! inverse bremsstrahlung

 $\left(\begin{array}{c} q\bar{q} \\ \gamma q \end{array}\right)$ 

Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

## SANC, DY, EW, NEUTRAL CURRENT



## SANC, DY, EW, NEUTRAL CURRENT



Renat SADYKOV

QCD-EW corrections interplay in Drell-Yan production at LHC

## **NC DY:** $\sigma$ , $P_T^{\ell}$ distribution



## NC DY: $\delta$ , $P_T^{\ell}$ distribution



## NC DY: $\sigma$ , $M_{\ell^+\ell^-}$ distribution



## NC DY: $\delta$ , $M_{\ell^+\ell^-}$ distribution



The corrections for NC DY invariant mass  $M_{\ell^+\ell^-}$  distribution are huge around Z-resonance. This effect is well known from the world literature. See, for example

**U. Baur, S. Keller, W.K. Sakumoto**, *QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders.*, Phys.Rev.D57:199-215,1998, hep-ph/9707301

**U. Baur, O. Brein, W. Hollik, C. Schappacher, D. Wackeroth**, *Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders.*, Phys.Rev.D65:033007,2002, hep-ph/0108274

(日) (周) (王) (王)

## SANC application for processes Drell–Yan processes: tuned comparison

#### We continue tuned comparison within TEV4LHC Workshop.

List of participants:

- HORACE C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini (PAVIA)
- SANC SANC group (JINR)
- W(Z)GRAD2 U. Baur, D. Wackeroth (FNAL)

(周) (三) (三)

A Q Q

## **QCD NLO diagrams for DY CC**



**A** 

5990

## QCD NLO diagrams for DY CC



## **QCD NLO diagrams for DY CC**



## **QCD NLO diagrams for DY NC**



Using SANC system we performed analytical calculations for these processes and got FORTRAN modules at parton level. Than we created a MC integrator based on VEGAS<sup>1</sup> algorithm to obtain a hadron level distributions convoluting parton level cross-sections with PDF (we used MRST2004QED). Also the substraction scheme (see, for instance<sup>2</sup>) was applied to avoid double counting of quark mass logarithms. Presented data are obtained with Les Houches workshop input parameters and setup.

<sup>2</sup>A. Arbuzov et al. Eur.Phys.J. **C 46** (2006) 407 hep-ph/0506110.

Sa Cr

<sup>&</sup>lt;sup>1</sup>G.P. Lepage, J.Comput.Phys. **27** (1978) 192.

CC:



< □ > Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

- < 🗗 > - < 🚍 >

4 E b

€

5990

CC:

 $\left(\begin{array}{c}q'\bar{q}\\gq\end{array}\right)\otimes\left(\begin{array}{c}p_T\\M_T\end{array}\right)$ 

< 冊→ < 三→

∃ ≥ ►

€

5990

CC:

 $\begin{pmatrix} q'\bar{q} \\ gq \end{pmatrix} \otimes \begin{pmatrix} p_T \\ M_T \end{pmatrix} \otimes \begin{pmatrix} \mu \\ e \end{pmatrix}$ 

< 冊 > < 三 >

→ Ξ →

€

Dac

CC:

$$\left(\begin{array}{c} q'\bar{q} \\ gq \end{array}\right) \otimes \left(\begin{array}{c} p_T \\ M_T \end{array}\right) \otimes \left(\begin{array}{c} \mu \\ e \end{array}\right)$$

NC:

 $\begin{pmatrix} q\bar{q} \\ gq \end{pmatrix} \otimes \begin{pmatrix} p_T \\ M_{\ell+\ell^-} \end{pmatrix} \otimes \begin{pmatrix} \mu \\ e \end{pmatrix}$ 

《曰》 《問》 《言》 《言》

€

5900

## CC: $\left(\begin{array}{c}q'\bar{q}\\gq\end{array}\right)\otimes\left(\begin{array}{c}p_{T}\\M_{T}\end{array}\right)\otimes\left(\begin{array}{c}\mu\\e\end{array}\right)$ NC: $\begin{pmatrix} q\bar{q} \\ gq \end{pmatrix} \otimes \begin{pmatrix} p_T \\ M_{\ell^+\ell^-} \end{pmatrix} \otimes \begin{pmatrix} \mu \\ e \end{pmatrix}$

almost done.

(日) (周) (王) (王)

∍

A Q Q

## CC: $\sigma$ , LO & NLO, $P_T$ distribution



## **CC**: $\delta$ , $P_T$ distribution



## **CC**: $\sigma$ and $\delta$ , $P_T$ distribution



## CC: $\sigma$ , LO & NLO, $M_T$ distribution



Renat SADYKOV QCD-EW corrections interplay in Drell-Yan production at LHC

5990

## **CC**: $\delta$ , $M_T$ distribution



## DY NC: LO & NLO distributions

## NC:

$$\left(\begin{array}{c} q'\bar{q} \\ gq \end{array}\right) \otimes \left(\begin{array}{c} p_T \\ M_{\ell^+\ell^-} \end{array}\right) \otimes \left(\begin{array}{c} \mu \\ e \end{array}\right)$$

almost done.

**P** >

< Ξ

ъ

€

5990

## NC: $\sigma$ , LO & NLO, $P_T$ distribution



## **NC:** $\delta$ , $P_T$ distribution



## NC: $\sigma$ , LO & NLO, $M_{\ell^+\ell^-}$ distribution



## NC: $\delta$ , $M_{\ell^+\ell^-}$ distribution



## **QCD-EW** interplay. **CC**: $\delta$ , $P_T$ distribution



QCD-EW corrections interplay in Drell-Yan production at LHC

## **QCD-EW** interplay. **CC**: $\delta$ , $M_T$ distribution



## **QCD-EW** interplay. **NC:** $\delta$ , $P_T$ distribution



QCD-EW corrections interplay in Drell-Yan production at LHC

## **QCD-EW** interplay. **NC:** $\delta$ , $M_{\ell^+\ell^-}$ distribution



QCD & EW corrections for DY processes are presented within common setup, showing quite different structure (for some regions of particular distributions EW corrections dominate).

・ 同下 ・ 三下 ・ 三下

€

Jac.

QCD & EW corrections for DY processes are presented within common setup, showing quite different structure (for some regions of particular distributions EW corrections dominate).

The main goals are

< 回 > < 三 > < 三 >

€

- QCD & EW corrections for DY processes are presented within common setup, showing quite different structure (for some regions of particular distributions EW corrections dominate).
- The main goals are
  - to implement all DY subprocesses in CC and NC branches at one-loop level during the work of tuned comparison groups

《曰》 《圖》 《言》 《言》

∍

- QCD & EW corrections for DY processes are presented within common setup, showing quite different structure (for some regions of particular distributions EW corrections dominate).
- The main goals are
  - to implement all DY subprocesses in CC and NC branches at one-loop level during the work of tuned comparison groups

■ to create "the best you can" (BYC) on this basement