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Backward Evolution
Probability of branching between scales t1

and t2

P(t1, t2;x) = exp

{

−
∫ t2

t1

dt

t

∫ dz

z
P (z)

f(x/z, t)

f(x, t)

}

When one integrates over all emissions, we
regain the original collinear pdf

Thus we can rely on standard factorization
schemes in matrix element matching

P. Stephens, Epiphany 2007 - Krakow, Poland – p.3/19



Constrained Monte
Carlo

As discussed by S. Jadach and M. Skrypek,
the CMC is a forward evolution of the initial
state (unintegrated pdf)

The constraints on the evolution, imposed by
the hard process, are included in the
evolution through a transformation and
reweighting procedure

Inclusion of the hard process in a similar way
as the YFS method in QED
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CMC

xDf (t, x) = e−Φf (t,t0|x)xDf (t0, x) +

∞
∑

N=0

∫ 1

0

dx0

[

N
∏

i=1

∫ t

t0

dtiθ(ti − ti−1)

∫ 1

0

dyi

∫ 2π

0

dφi

2π

]

×e−Φf (t,tN |x)

[

N
∏

i=1

xi

xi−1
Kff (ti, xi, xi−1)e−Φf (ti,ti−1|xi−1)

]

×x0Df (t0, x0)δ(x − x0 +
∑

yj),

=

∫ 1

0

dx0 Uff (t, x|t0, x0)x0Df (t0, x0)

and of course, the k⊥ can be reconstructed from the other kinematic variables.
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CMC
We can combine two hemispheres, and retain
full phase space coverage by dividing the two
hemispheres by a line of constant rapidity
(that of the hard subprocess), η? = 1

2
ln xF

xB

Impose a δ to fix the s′ for the hard process,
with x = s′/s

σ =

∫

dx

∫

dxF dxB

∑

fF
0

fB
0

∫

dx0F dx0BD
fF
0

(t0, x0F )D
fB
0

(t0, x0B)

×UF

fF fF
0

(tF , xF |t0, x0F , η?)UB

fBfB
0

(tB , xB |t0, x0B , η?)σBorn(s′)

×sδ(sx − (q0F + q0B − KF − KB)2)
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CMC
In order to use the same evolution operators,
U , and to match the hard process, we must
consider several issues

IR regularization of MEs

Avoid double counting (hard contribution and parton shower contribution)

May have a new class of object, in the purely collinear regime

Negative weights

Relationship to standard factorization theorems and schemes

We have successfully dealt with the first four
items, still working on the last one
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CMC
We can now define a β function, which will
allow us to construct the NLO cross section

β(s′,
{

kF
i

}

,
{

kB
i

}

) ≈ σBorn + σNLO(·)
σBorn(s′)

= β0(s
′) + β1(s

′, {ki})
+βcol

1 (zF ) + βcol
1 (zB)

We must avoid double counting contributions
and define an appropriate IR regulation
procedure to define the β function
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CMC
We can now define a β function, which will
allow us to construct the NLO cross section

β(s′,
{

kF
i

}

,
{

kB
i

}

) ≈ σBorn + σNLO(·)
σBorn(s′)

= β0(s
′) + β1(s

′, {ki})
+βcol

1 (zF ) + βcol
1 (zB)

σNLO =

∫

dx

∫

dxF dxB

∑

fF
0

fB
0

∫

dx0F dx0BD
fF
0

(t0, x0F )D
fB
0

(t0, x0B)

×UF

fF fF
0

(tF , xF |t0, x0F , η?)UB

fBfB
0

(tB , xB |t0, x0B , η?)σBorn(s′)

×sδ(sx − (q0F + q0B − KF − KB)2)β(s′,
{

k
F,B
i

}

)
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NLO Calculation
The NLO calculation (from Feynman
diagrams) is generally of the form (in 4 − 2ε
dimensions)

dn+1σV =

[(

AV

ε2
+

BV

ε

)

dnσBorn + dnσV,reg

]

δ(p+)δ(p−)dp+dp−

dn+1σR = dn+1σf +
δ(p+)δ(p−)

ε2
dnσSdp+dp−

+
dp+dp−

ε

(

dnσC+(p+)δ(p−) + dnσC−(p−)δ(p+)
)

dn : the differential element of the Born phase space

the angular information is implicit

p+ and p− are the light-cone components of the gluon emission
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NLO Calculation
The soft singularities cancel with the virtual
contribution

The collinear singularities are handled by the
factorization scheme, i.e. absorbed into the
non-perturbative part of pdf

We define the subtracted quantities
dσ̂ = dσ − dσct

So we have the following finite quantities

dσNLO + PDFct = dσ̂SV + dσ̂C+ + dσ̂C− + dσf
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MC@NLO Frixione & Webber

The MC contribution at NLO is computed, i.e.
dσMC

The counterterms are “undone” and
rearranged

2 → 3 : dσR − dσMC

2 → 2 : dσV S − dσR,ct + dσMC + dσBorn

2 → 2̃ : dσC+ + dσC− − dσC+,ct − dσC−,ct

The last class of events, can be treated with 2 → 2 kinematics via a
longitudinal boost

The two individual classes of kinematics are used to generate the initial
conditions of the shower

The two classes are combined with the appropriate weight (ratio of cross
sections) at the end
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CMC at NLO
We propose a similar approach as MC@NLO (to avoid
double counting)

Our IR regularization procedure is universal. Only
parton shower connection is due to the separation of
forward and backward hemispheres

Use this approach to define the β functions, i.e.

β0 ∼ 2 → 2 ; β1 ∼ 2 → 3

Avoids double counting

One class of events - no negative weights
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CMC at NLO
Use the AP splitting kernel (plus eikonal
factor), in 4 − 2ε dimensions

Virtual subtraction term is minus the integral
of the real term
Subtraction over full range of values (not
restricted by shower cutoffs)

dnσV,ct = −

∫

dp+

(p+)1+ε

dp−

(p−)1+ε

[

K(p+, ε)θF + K(p−, ε)θB

]

dnσBorn
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CMC at NLO
These counterterms lead to the definition of
the β function

β0 = 1 +
dσV − dσV,ct

dσB

; β1(ki) =
dσR − dσR,ct

dσBK(ki)

Gluon momentum for β1 chosen to be the
hardest emission; must lie next to hard
process (as in Nason@NLO)

Numerically confirmed 60% of hardest emissions next to hard
process

Not necessary, but differs by subleading terms
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CMC at NLO
Subtraction term is not equal to parton
shower contribution, due to ordering and IR
regulator 1 − εz (resolvability)

Difference between subtracted term and
parton shower can be computed

Missing contributions lie in collinear region

This defines βcol
1

A factorization scheme must be applied to
define βcol

1
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CMC at NLO
If we use the same terms as MS to define our
scheme we find

βcol

1,MS−like
(z) = (1 − z) +

(

1 + z2

1 − z

)

εz

log
q̃2

µ2
R

+

(

log(1 − z)

1 − z

)

εz

(1 + z2)

with

∫ 1

1−εz

dz

(

1

1 − z

)

εz

f(z) =

∫ 1

1−εz

f(z) − f(1)

1 − z

q̃ = qn−1

√
xFxB

µR is the renormalization scale for the
emission
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CMC at NLO
Subtraction terms do not change normalization of
cross section

β function is finite

β function gives correct cross section and differential
distribution

Discrepency between shower and counterterms is
universal, i.e. does not depend on hard process

Discrepency does not effect cross section

Exact treatment of collinear β function still to be
worked out; must be tested numerically!
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Remaining issues

Understand how our evolution differs from
standard collinear factorization; can we
correct in some way to all orders?

Verify proposed treatment of βcol
1

Implement for qq̄ → W +W− + g

Expect results soon
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Conclusion
Presented a method for universal treatment of
hard process

Parton shower specific issues are treated
once for all hard processes

No negative weights (by construction)

No double counting

Expect to have results for W +W− production
soon
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