Matching CMC at NLO

Philip Stephens

IFJ-PAN, Kraków, Poland

This work is supported by the EU grant mTkd-CT-2004-510126 in partnership with the CERN Physics Department and by the Polish Ministry of Scientific Research and Information Technology grant No 620/E-77/6.PRUE/DIE 188/2005-2008.

Overview

■ Backward Evolution

- Constrained Monte Carlo (CMC)
- NLO Calculation
- Matching implemented for MC@NLO
- Proposal for CMC at NLO

■ Unresolved Issues

Backward Evolution

- Probability of branching between scales t_{1} and t_{2}

$$
\mathcal{P}\left(t_{1}, t_{2} ; x\right)=\exp \left\{-\int_{t_{1}}^{t_{2}} \frac{d t}{t} \int \frac{d z}{z} P(z) \frac{f(x / z, t)}{f(x, t)}\right\}
$$

■ When one integrates over all emissions, we regain the original collinear pdf

- Thus we can rely on standard factorization schemes in matrix element matching

Constrained Monte Carlo

■ As discussed by S. Jadach and M. Skrypek, the CMC is a forward evolution of the initial state (unintegrated pdf)

- The constraints on the evolution, imposed by the hard process, are included in the evolution through a transformation and reweighting procedure
- Inclusion of the hard process in a similar way as the YFS method in QED

CMC

$$
\begin{aligned}
x D_{f}(t, x)= & e^{-\Phi_{f}\left(t, t_{0} \mid x\right)} x D_{f}\left(t_{0}, x\right)+ \\
& \sum_{N=0}^{\infty} \int_{0}^{1} d x_{0}\left[\prod_{i=1}^{N} \int_{t_{0}}^{t} d t_{i} \theta\left(t_{i}-t_{i-1}\right) \int_{0}^{1} d y_{i} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi}\right] \\
& \times e^{-\Phi_{f}\left(t, t_{N} \mid x\right)}\left[\prod_{i=1}^{N} \frac{x_{i}}{x_{i-1}} K_{f f}\left(t_{i}, x_{i}, x_{i-1}\right) e^{-\Phi_{f}\left(t_{i}, t_{i-1} \mid x_{i-1}\right)}\right] \\
& \times x_{0} D_{f}\left(t_{0}, x_{0}\right) \delta\left(x-x_{0}+\sum y_{j}\right) \\
= & \int_{0}^{1} d x_{0} \mathcal{U}_{f f}\left(t, x \mid t_{0}, x_{0}\right) x_{0} D_{f}\left(t_{0}, x_{0}\right)
\end{aligned}
$$

and of course, the k_{\perp} can be reconstructed from the other kinematic variables.

CMC

$■$ We can combine two hemispheres, and retain full phase space coverage by dividing the two hemispheres by a line of constant rapidity (that of the hard subprocess), $\eta^{\star}=\frac{1}{2} \ln \frac{x_{F}}{x_{B}}$

- Impose a δ to fix the s^{\prime} for the hard process, with $x=s^{\prime} / s$

$$
\begin{aligned}
\sigma= & \int d x \int d x_{F} d x_{B} \sum_{f_{0}^{F} f_{0}^{B}} \int d x_{0 F} d x_{0 B} D_{f_{0}^{F}}\left(t_{0}, x_{0 F}\right) D_{f_{0}^{B}}\left(t_{0}, x_{0 B}\right) \\
& \times \mathcal{U}_{f^{F} f_{0}^{F}}^{F}\left(t_{F}, x_{F} \mid t_{0}, x_{0 F}, \eta^{\star}\right) \mathcal{U}_{f^{B} f_{0}^{B}}^{B}\left(t_{B}, x_{B} \mid t_{0}, x_{0 B}, \eta^{\star}\right) \sigma^{\mathrm{Born}}\left(s^{\prime}\right) \\
& \times s \delta\left(s x-\left(q_{0 F}+q_{0 B}-K_{F}-K_{B}\right)^{2}\right)
\end{aligned}
$$

CMC

- In order to use the same evolution operators, \mathcal{U}, and to match the hard process, we must consider several issues
- IR regularization of MEs
\square Avoid double counting (hard contribution and parton shower contribution)
May have a new class of object, in the purely collinear regime
- Negative weights

Relationship to standard factorization theorems and schemes

- We have successfully dealt with the first four items, still working on the last one

CMC

- We can now define a β function, which will allow us to construct the NLO cross section

$$
\begin{aligned}
\beta\left(s^{\prime},\left\{k_{i}^{F}\right\},\left\{k_{i}^{B}\right\}\right) \approx & \frac{\sigma^{\mathrm{Born}}+\sigma^{\mathrm{NLO}}(\cdot)}{\sigma^{\mathrm{Born}}\left(s^{\prime}\right)} \\
= & \beta_{0}\left(s^{\prime}\right)+\beta_{1}\left(s^{\prime},\left\{k_{i}\right\}\right) \\
& +\beta_{1}^{\mathrm{col}}\left(z_{F}\right)+\beta_{1}^{\mathrm{col}}\left(z_{B}\right)
\end{aligned}
$$

- We must avoid double counting contributions and define an appropriate IR regulation procedure to define the β function

CMC

- We can now define a β function, which will allow us to construct the NLO cross section

$$
\begin{aligned}
\beta\left(s^{\prime},\left\{k_{i}^{F}\right\},\left\{k_{i}^{B}\right\}\right) \approx & \frac{\sigma^{\text {Born }}+\sigma^{\mathrm{NLO}}(\cdot)}{\sigma^{\operatorname{Born}}\left(s^{\prime}\right)} \\
= & \beta_{0}\left(s^{\prime}\right)+\beta_{1}\left(s^{\prime},\left\{k_{i}\right\}\right) \\
& +\beta_{1}^{\mathrm{col}}\left(z_{F}\right)+\beta_{1}^{\mathrm{col}}\left(z_{B}\right) \\
\sigma^{\mathrm{NLO}}= & \int d x \int d x_{F} d x_{B} \sum_{f_{0}^{F} f_{0}^{B}} \int d x_{0 F} d x_{0 B} D_{f_{0}^{F}}\left(t_{0}, x_{0 F}\right) D_{f_{0}^{B}}\left(t_{0}, x_{0 B}\right) \\
& \times \mathcal{U}_{f^{F} f_{0}^{F}}^{F}\left(t_{F}, x_{F} \mid t_{0}, x_{0 F}, \eta^{\star}\right) \mathcal{U}_{f^{B} f_{0}^{B}}^{B}\left(t_{B}, x_{B} \mid t_{0}, x_{0 B}, \eta^{\star}\right) \sigma^{\text {Born }}\left(s^{\prime}\right) \\
& \times s \delta\left(s x-\left(q_{0 F}+q_{0 B}-K_{F}-K_{B}\right)^{2}\right) \beta\left(s^{\prime},\left\{k_{i}^{F, B}\right\}\right)
\end{aligned}
$$

NLO Calculation

- The NLO calculation (from Feynman

 diagrams) is generally of the form (in $4-2 \epsilon$ dimensions)$$
\begin{aligned}
d_{n+1} \sigma_{V}= & {\left[\left(\frac{A_{V}}{\epsilon^{2}}+\frac{B_{V}}{\epsilon}\right) d_{n} \sigma^{\text {Born }}+d_{n} \sigma_{V, \text { reg }}\right] \delta\left(p^{+}\right) \delta\left(p^{-}\right) d p^{+} d p^{-} } \\
d_{n+1} \sigma_{R}= & d_{n+1} \sigma_{f}+\frac{\delta\left(p^{+}\right) \delta\left(p^{-}\right)}{\epsilon^{2}} d_{n} \sigma_{S} d p^{+} d p^{-} \\
& +\frac{d p^{+} d p^{-}}{\epsilon}\left(d_{n} \sigma_{C+}\left(p^{+}\right) \delta\left(p^{-}\right)+d_{n} \sigma_{C-}\left(p^{-}\right) \delta\left(p^{+}\right)\right)
\end{aligned}
$$

$\square d_{n}$: the differential element of the Born phase space
\square the angular information is implicit

- p^{+}and p^{-}are the light-cone components of the gluon emission

NLO Calculation

- The soft singularities cancel with the virtual contribution
- The collinear singularities are handled by the factorization scheme, i.e. absorbed into the non-perturbative part of pdf
$■$ We define the subtracted quantities $d \hat{\sigma}=d \sigma-d \sigma_{\mathrm{ct}}$
- So we have the following finite quantities

$$
d \sigma_{\mathrm{NLO}}+\mathrm{PDF}_{c t}=d \hat{\sigma}_{S V}+d \hat{\sigma}_{C+}+d \hat{\sigma}_{C-}+d \sigma_{f}
$$

MC@NLO Frixione \& Webber

■ The MC contribution at NLO is computed, i.e.

 $d \sigma_{M C}$- The counterterms are "undone" and rearranged

$$
\begin{array}{ll}
2 \rightarrow 3 & : d \sigma_{R}-d \sigma_{M C} \\
2 \rightarrow 2 & : d \sigma_{V S}-d \sigma_{R, c t}+d \sigma_{M C}+d \sigma^{\text {Born }} \\
2 \rightarrow \tilde{2} & : d \sigma_{C+}+d \sigma_{C-}-d \sigma_{C+, c t}-d \sigma_{C-, c t}
\end{array}
$$

\square The last class of events, can be treated with $2 \rightarrow 2$ kinematics via a longitudinal boost

- The two individual classes of kinematics are used to generate the initial conditions of the shower

The two classes are combined with the appropriate weight (ratio of cross sections) at the end

CMC at NLO

■ We propose a similar approach as MC@NLO (to avoid double counting)

- Our IR regularization procedure is universal. Only parton shower connection is due to the separation of forward and backward hemispheres

■ Use this approach to defi ne the β functions, i.e.

$$
\beta_{0} \sim 2 \rightarrow 2 ; \quad \beta_{1} \sim 2 \rightarrow 3
$$

- Avoids double counting
\square One class of events - no negative weights

CMC at NLO

■ Use the AP splitting kernel (plus eikonal factor), in $4-2 \epsilon$ dimensions

- Virtual subtraction term is minus the integral of the real term
- Subtraction over full range of values (not restricted by shower cutoffs)

$$
d_{n} \sigma_{V, c t}=-\int \frac{d p^{+}}{\left(p^{+}\right)^{1+\epsilon}} \frac{d p^{-}}{\left(p^{-}\right)^{1+\epsilon}}\left[K\left(p^{+}, \epsilon\right) \theta_{F}+K\left(p^{-}, \epsilon\right) \theta_{B}\right] d_{n} \sigma^{\text {Born }}
$$

CMC at NLO

■ These counterterms lead to the definition of the β function

$$
\beta_{0}=1+\frac{d \sigma_{V}-d \sigma_{V, c t}}{d \sigma_{B}} ; \beta_{1}\left(k_{i}\right)=\frac{d \sigma_{R}-d \sigma_{R, c t}}{d \sigma_{B} K\left(k_{i}\right)}
$$

■ Gluon momentum for β_{1} chosen to be the hardest emission; must lie next to hard process (as in Nason@NLO)

- Numerically confi rmed 60% of hardest emissions next to hard process
■ Not necessary, but differs by subleading terms

CMC at NLO

■ Subtraction term is not equal to parton shower contribution, due to ordering and IR regulator $1-\varepsilon_{z}$ (resolvability)

- Difference between subtracted term and parton shower can be computed
■ Missing contributions lie in collinear region
- This defines $\beta_{1}^{\text {col }}$

■ A factorization scheme must be applied to define $\beta_{1}^{\text {col }}$

CMC at NLO

- If we use the same terms as $\overline{\mathrm{MS}}$ to define our scheme we find

$$
\beta_{1, \mathrm{MS}-\mathrm{like}}^{\mathrm{col}}(z)=(1-z)+\left(\frac{1+z^{2}}{1-z}\right)_{\varepsilon_{z}} \log \frac{\tilde{q}^{2}}{\mu_{R}^{2}}+\left(\frac{\log (1-z)}{1-z}\right)_{\varepsilon_{z}}\left(1+z^{2}\right)
$$

with

$$
\int_{1-\varepsilon_{z}}^{1} d z\left(\frac{1}{1-z}\right)_{\varepsilon_{z}} f(z)=\int_{1-\varepsilon_{z}}^{1} \frac{f(z)-f(1)}{1-z}
$$

$\square \tilde{q}=q_{n-1} \sqrt{x_{F} x_{B}}$
$-\mu_{R}$ is the renormalization scale for the emission

CMC at NLO

$■$ Subtraction terms do not change normalization of cross section

- β function is fi nite
- β function gives correct cross section and differential distribution
- Discrepency between shower and counterterms is universal, i.e. does not depend on hard process
- Discrepency does not effect cross section

■ Exact treatment of collinear β function still to be worked out; must be tested numerically!

Remaining issues

■ Understand how our evolution differs from standard collinear factorization; can we correct in some way to all orders?

- Verify proposed treatment of $\beta_{1}^{\text {col }}$

■ Implement for $q \bar{q} \rightarrow W^{+} W^{-}+g$

- Expect results soon

Conclusion

- Presented a method for universal treatment of hard process
- Parton shower specific issues are treated once for all hard processes
- No negative weights (by construction)
\square No double counting
■ Expect to have results for $W^{+} W^{-}$production soon

