

Measurements of W and Z properties at the LHC

Maarten Boonekamp, CEA-Saclay Epiphany Conference, Cracow, Jan 2007

January 5, 2007

Cross-sections of interest span >10 orders of magnitude

 $\sigma_w \sim 150 \text{ nb}$ $BR(W \rightarrow e+\mu) \sim 20\%$ 10 fb⁻¹ \Leftrightarrow 300M leptonic events Rate(10^{33} cm⁻² s⁻¹) ~ 30 Hz Rate(10³⁴ cm⁻² s⁻¹) ~ 300 Hz

 \Box $\sigma_7 \sim 50 \text{ nb}$ $BR(Z \rightarrow ee + \mu\mu) \sim 6.6\%$ 10 fb⁻¹ \Leftrightarrow 33M leptonic events Rate $(10^{33} \text{ cm}^{-2} \text{ s}^{-1}) \sim 3.5 \text{ Hz}$ Rate(10³⁴ cm⁻² s⁻¹) ~ 35 Hz

ATLAS

Outline

- □ W,Z physics programme :
 - □ Motivation : a New Physics oriented example
 - □ Production properties (differential cross-sections).
 - Decay modes, A_{FB} (skipped).
 - □ M_w
- Detector performance : what is known about Z events?
 - □ Leptons come in pairs \rightarrow efficiency
 - □ Resonance :
 - $M_Z \rightarrow$ Energy scale
 - $\Gamma_{\rm Z} \rightarrow {\rm Resolution}$
 - $\hfill\square$ Specifications given by the M_W analysis
- \Box M_w discussion. How far can we reach?

Dileptons at high mass

□ High-mass spectrum (where we might look for Z'):

□ How to improve without absorbing the effect of possible new physics?

Maarten Boonekamp, CEA-Saclay

5

\rightarrow Measure W,Z cross-sections

- Measure standard cross-sections sensitive to the same sources of uncertainty, efficiently triggered, and unlikely to hide new physics : W,Z
- Recent analysis (CMS)
 - \Box Z : 2 isolated muons with p_T>20 GeV, $|\eta|$ < 2, 84 < M_{µµ} < 99 GeV, ...

W,Z total cross-section

□ Results, for 1 fb⁻¹ (or ~600k Z \rightarrow µµ, ~6M W \rightarrow µv events):

- □ Cross-sections :
 - □ $\sigma(Z \rightarrow \mu \mu + X) = 1160 \pm 1.5 \text{ (stat)} \pm 27 \text{ (syst)} \text{ pb}$
 - □ $\sigma(W \rightarrow \mu v + X) = 14700 \pm 6 \text{ (stat)} \pm 485 \text{ (syst)} \text{ pb}$

Already dominated by systematics.

Systematics breakdown: theory dominated (acceptance).
 (Frixione, Mangano arrived at the same conclusion).

CMS NOTE 2006/082				
Source	Uncertainty (%)			
Tracker efficiency	1			
Magnetic field knowledge	0.03			
Tracker alignment	0.14			
Trigger efficiency	0.2			
Jet energy scale uncertainties	0.35			
Pile-up effects	0.30			
Underlying event	0.21			
Total exp.	1.1			
PDF choice (CTEQ61 sets)	0.7			
ISR treatment	0.18			
p_T effects (LO to NLO)	1.83			
Total PDF/ISR/NLO	2.0			
Total	2.3			

Source	Uncertainty (%
Tracker efficiency	0.5
Muon efficiency	1
Magnetic field knowledge	0.05
Tracker alignment	0.84
Trigger efficiency	1.0
Transverse missing energy	1.33
Pile-up effects	0.32
Underlying event	0.24
Total exp.	2.2
PDF choice (CTEQ61 sets)	0.9
ISR treatment	0.24
p_T effects (LO to NLO)	2.29
Total PDF/ISR/NLO	2.5
Total	3.3

January 5, 2007

Maarten Boonekamp, CEA-Saclay

7

- So this is a first step : total cross-sections don't teach us much about how to constrain the theory; the effects that hinder our high-mass predictions are also playing here.
- □ Specifically, the acceptance uncertainties (not knowing how many events are outside the y, M, p_T(I) windows we select) should be improved.
- It is thus important to analyse the shapes : dσ/dy, dσ/dp_T, dσ/dM. Z events are better than W in this respect (fully measured). Since the Z decay is well known, the acceptance uncertainty on differential cross-sections is small.
- □ Improvement on the theoretical description then comes from:
 - \Box Confronting data and theory within the analysed (y,p_T,M) domain
 - □ Better extrapolation outside the analysed domain

\rightarrow Differential cross-sections (1)

Two examples on structure functions :

Differential cross-sections (2)

It is important to extend the y_z acceptance if possible, reducing the extrapolation uncertainty. Consider the Z \rightarrow ee channel:

- □ Link with high mass dileptons :
 - □ central heavy object (~2.5-3 TeV) has $x \sim M/\sqrt{s} \sim 0.2$
 - \square Can be controlled by Z events if forward enough : $x_{1,Z}$ ~ 0.2 if y_Z ~ 3.5
 - \Box Expect ~800k events in 2.5<y_z<4 for 10 fb⁻¹

Precision Measurement of M_w

January 5, 2007

Precision measurements : M_W

□ Simple and powerful in principle: consider e.g the $p_T(I)$ spectrum (other sensitive distribution : $M_T(W)$)

- □ Statistical sensitivity : ~2 MeV (1 channel/experiment, 10 fb⁻¹)
- But need to predict the spectrum precisely!

Precision measurements : M_W

Ingredients

- □ Lepton energy scale and resolution. Linearity. Reconstruction efficiency
- □ W dynamics : rapidity, transverse momentum, polarization, final state radiation

Current consensus (hep-ph/0003275...)

Lepton energy scale:	15 MeV	(limitation : Z \rightarrow W extrapolation. Linearity)
PDF's :	10 MeV	(from comparison of existing sets)
QED FSR :	10 MeV	(calculation up to $O(\alpha^2)$)
Lepton resolution :	5 MeV	
QCD corrections :	5 MeV	(limitation : $Z \rightarrow W$ extrapolation)

\Box \rightarrow The Z calibration sample revisited

- □ Improvements on the above. Expected performance
- □ Recent studies by CMS (note 2006/061) and ATLAS (t.b.p)

 \Box Achievable precision : $\delta\beta$ ~ 10^{-5}, $\delta\sigma$ ~ 10^{-4}

□ But indeed, how does this translate to a W-mass measurement?

M_W : energy scale and resolution (2)

Now differentiate in energy (i.e consider lepton energy bins i, j).
 Repeat previous fit for every pair configuration (i,j):

- $\square \quad M_{ij}^{2} = E_{i}E_{j}(1-\cos\theta) ; (1+\beta_{ij})^{2} M_{ij}^{2} = (1+\alpha_{i})E_{i}(1+\alpha_{j})E_{j}(1-\cos\theta)$
- $\Box \implies \beta_{ij} \sim (\alpha_i + \alpha_j)/2 \ ; \ \sigma_{ij}^2/M^2 = \sigma_i^2/E_i^2 + \sigma_j^2/E_j^2 \ ; \ \text{write this for all } (i,j)$
- \Box and solve the linear system (least squares) to get the α_i and σ_i^2

M_W : energy scale and resolution (3)

□ Propagation to M_w : vary the linearity and resolution functions within their uncertainties (at random), distribute M_w (fit) :

- □ → $\delta M_W(\text{scale}) = 3 \text{ MeV}$ (one channel/experiment, 10 fb⁻¹) After combinations, get ~1 MeV → strong correlation with δM_Z !
- NB : a priori knowledge of absolute scale ~1% (from detector simulation)
 January 5, 2007 Maarten Boonekamp, CEA-Saclay

M_W : reconstruction efficiency (1)

□ p_T dependence of efficiency distorts the $p_T(I)$ spectrum. Ignoring it causes a surprisingly large bias (especially in the electron channel):

M_W : reconstruction efficiency (2)

□ But again, efficiency can be measured in Z events (muon example):

Tag Muon: Track in Inner Detector AND Muon Spectrometer (+Isolation and pT-Cuts)

Probe Muon: Track in Inner Detector (+Isolation and pT-Cuts)

□ If this di-muon mass is near 91GeV and $\Delta \phi$ >2, then the probe muon is assumed to be a real muon

muon efficiency is given by the fraction of probe muons with tracks in the Muon Spectrometer

18

January 5, 2007

□ After correction, the remaining M_w systematic is ~2 MeV (muon channel), and ~10 MeV (electron channel, stronger p_T dependency).

M_W : W dynamics

- $\Box \quad W \rightarrow I \text{ angular distribution}$
- W distributions
- □ What happens:

20

M_W : structure functions (1)

- **Directly affect** y_w (...and indirectly p_{Tw})
- □ Using CTEQ6 pdf "uncertainty sets", one can evaluate the current uncertainty :

 \Box $\delta M_{W} \sim 25 \text{ MeV}$: worse than expected!

January 5, 2007

M_W : p_T spectrum (1)

- \Box W,Z p_T predictions is currently a busy subject. Large uncertainties remain
- □ However, QCD tells that the mechanisms at work in W and Z production are identical. Differences come from phase space $(M_W \neq M_Z)$ and different couplings of W and Z to the partons in the proton.

M_W : p_T spectrum (2)

- Not to say that p_{T,W}=p_{T,II}(M_{II}=M_W)! Non-universalities (EW) need to corrected for. Can be precisely computed (need precision MC!) Measuring the off-peak p_{T,II} allows to get rid of the phase space difference and control the non-perturbative effects.
- □ This improves over the "ratio method", where all W distributions are defined from Z distributions rescaled by M_W/M_Z this is a crude approximation, not suited to LHC statistics.

The W acceptance objection (1)

Often read : in Z events, require two leptons; in W events, only one (neutrino unconstrained). Hence there is a y_w region out of our control. This will be a limiting systematic!

The W acceptance objection (3)

Even better : Z production at LHCb

January 5, 2007

Maarten Boonekamp, CEA-Saclay

 \Box In terms of x1,x2 : the W range is now covered, even without leaving the Z peak

January 5, 2007

A few comments

- A popular M_w measurement method at the Tevatron is the « ratio method », that deduces W distributions (those used for the mass determination : p_T(I), M_T(W)) from Z ones, modulo a rescaling factor M_w/M_z.
 This acknowledges universality of QCD effects
- □ There is a tendency to apply this at the LHC (cf. CMS NOTE 2006/061)
- □ But this will fail badly. Approximations of the ratio method:
 - □ Integration over the W and Z phase space, assuming the M_W/M_Z factor maps the Z phase space into the W one

will induce prohibitive systematics when aiming at high precision

- The previous slides all show that improvement comes, on the contrary, from analyzing the Z phase space in detail, and apply phase space dependent corrections to the W distributions
- □ More involved, but mandatory

January 5, 2007

Simplified picture of the analysis

□ Analyse the Z sample.

Z distribution :		Constrains (mainly):
Resonance	\rightarrow	Energy scale, resolution $== f(E_T, \eta)$
Rapidity	\rightarrow	Parton luminosities $== f(x1,x2)$
p _⊤ (vs. M _{II})	\rightarrow	non-perturbativie QCD parameters == $f(p_T, M_V)$

□ Correct for EW effects. For example :

Photon radiation affects the resonance shape \rightarrow Energy scale EW corrections affect Z pT spectrum (through lepton acceptance effects)

- \Box Obtain correct W distributions, now depending only on M_w, Γ_w
- □ Fit those to the data

January 5, 2007

M_W : backgrounds

D Backgrounds distort the $p_T(I)$ spectrum

- □ Main expected sources : $Z \rightarrow II$ (1-2%), $W \rightarrow \tau v$ (1-2%), $Z \rightarrow \tau \tau$ (0.2%)
- □ QCD expected small (0.1%) after tight lepton selections

□ CMS studied the impact of imperfectly known background rates:

January 5, 2007

M_w : summary

□ So far, per channel/experiment for 10 fb⁻¹:

(source)	(old est.)	(updated estimate)	(tool)
Energy scale, linearity:	15 MeV	~3 MeV	Z lepton spectra
Lepton resolution :	5 MeV	<1 MeV	n
PDF's :	10 MeV	$\sim 1 \text{ MeV}$	do _z /dy, do _z /dM
QCD corrections :	5 MeV	~2 MeV	do _z /dp _T
Backgrounds :	5 MeV	~5 MeV	known to ~5%
			(conservative)

- □ NB : this discussion relies on $p_T(I)$. $M_T(W)$ is more stable against theory, but poses another problem (E_T Miss calibration)
- □ $\delta M_w \leq 5$ MeV looks achievable when combining, or with higher luminosity.
- □ No results yet, but encouraging situation :
 - □ QED FSR : recently much improved PHOTOS program (Golonka, Was), now includes radiation up to $O(\alpha^4)$ and exponentiation.
 - □ W polarisation : affects the lepton distributions, to be studied using WINHAC (Jadach, Placzek), in development

Consequences : M_H determination

Conclusions

- □ At the LHC, W and Z are expected in very large statistics. This promises good control of detector performance (efficiencies, energy scale, resolution)
- □ Will be improved by orders of magnitude : lepton universality (W,Z BR's), FCNC
- Cross-sections : the shapes (which play the key role) will be determined $>20 \times$ more precisely than current predictions
- □ M_W : exploiting all experiments, we can arrange the analysis such that the W phase space is entirely included in the Z one. Hence no extrapolation.

Acknowledging EW corrections play an important role, but assuming they carry small intrinsic uncertainty, the Z provides enough distributions to disentangle all QCD effects.

As a result, the case for $\delta M_W \sim \delta M_Z$ is very strong, and critically relies on the theoretical efforts presented at this workshop.

Exciting challenges ahead!

January 5, 2007

Maarten Boonekamp, CEA-Saclay

35

January 5, 2007

Echelle d'énergie et efficacités

- Efficacité ou échelle d'énergie d'abord?
- Rapport entre $d\sigma/dM_z$ avec et sans efficacité : pas de pente significative.
- L'échelle de masse est constante, avec ou sans fonction d'efficacité dans les « données »

Maarten Boonekamp, CEA-Saclay

Echelle d'énergie et fonctions de structure

Impact des fonctions de structure sur l'échelle d'énergie:

□ La somme quadratique des biais donne $\delta \alpha \sim 2.5$ MeV (précision actuelle) → non limitant!

January 5, 2007