# Recursive equations for arbitrary scattering processes at tree order *and beyond*

Costas G. Papadopoulos

Epiphany Conference, January 2007, Krakow

• Reliable cross section computation and event generation for multiparticle processes, with  $\sim 10-12$  particles in the final state.

- Reliable cross section computation and event generation for multiparticle processes, with  $\sim 10-12$  particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
   Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses .....

- Reliable cross section computation and event generation for multiparticle processes, with  $\sim 10-12$  particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
   Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses .....

PHEGAS:C.G.Papadopoulos, CPC 137 (2001) 247, hep-ph/0007335Monte-Carlo phase space integration/generation basedon optimized multichannel approach.

- Reliable cross section computation and event generation for multiparticle processes, with  $\sim 10-12$  particles in the final state.
- HELAC: A.Kanaki and C.G.Papadopoulos, CPC 132 (2000) 306, hep-ph/0002082.
   Matrix element computation algorithm, based on Dyson-Schwinger equations, including: EWK, QCD, fermion masses, reliable arithmetic, running couplings and masses .....

PHEGAS: C.G.Papadopoulos, CPC 137 (2001) 247, hep-ph/0007335 Monte-Carlo phase space integration/generation based on optimized multichannel approach.

hep-ph/0012004 and Tokyo 2001, (CPP2001) Computational particle physics, p. 20-25

T. Gleisberg, et al. Eur. Phys. J. C 34 (2004) 173

 $\begin{tabular}{ll} $\mathsf{Old}$ Feynman graphs $\to$ computational cost $\sim n!$ \end{tabular}$ 

Old Feynman graphs  $\rightarrow$  computational cost  $\sim n!$ 

New Dyson-Schwinger  $\rightarrow$  computational cost  $\sim 3^n$ 

P.Draggiotis, R.H.Kleiss and C.G.Papadopoulos, Phys. Lett. B439 (1998) 157

F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332

F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

Old Feynman graphs  $\rightarrow$  computational cost  $\sim n!$ 

New Dyson-Schwinger  $\rightarrow$  computational cost  $\sim 3^n$ 

P.Draggiotis, R.H.Kleiss and C.G.Papadopoulos, Phys. Lett. B439 (1998) 157

F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332

F. A. Berends and W. T. Giele, Nucl. Phys. B 306 (1988) 759.

• Example:  $e^-e^+ \rightarrow e^-e^+e^-e^+$  in QED:



### The Dyson-Schwinger recursion

• Imagine a theory with 3- and 4- point vertices and just one field. Then it is straightforward to write an equation that gives the amplitude for  $1 \rightarrow n$ 





### HELAC

- Construction of the skeleton solution of the Dyson-Schwinger equations. At this stage only integer arithmetic is performed. This is part of the initialization phase.
- Dressing-up the skeleton with momenta, provided by PHEGAS and wave functions, propagators, *n*-point functions in general.
- Unitary and Feynman gauges implemented. Due to multi-precision arithmetic, tests of gauge invariance can be extended to arbitrary precision.
- All fermions masses can be non-zero.
- All Electroweak and QCD vertices are implemented, including Higgs and would-be Goldstone bosons.



• Ordinary approach SU(N)-type

$$\mathcal{A}^{a_1 \ldots a_n} = \sum Tr(T^{a_{\sigma_1}} \ldots T^{a_{\sigma_n}}) \quad A(\sigma_1 \ldots \sigma_n)$$

Colour Configuration -  $\mathbf{EWK} \oplus \mathbf{QCD}$ 

• Ordinary approach SU(N)-type

$$\mathcal{A}^{a_1...a_n} = \sum Tr(T^{a_{\sigma_1}}...T^{a_{\sigma_n}}) \quad A(\sigma_1...\sigma_n)$$

$$\mathcal{C}_{ij} = \sum Tr(T^{a_{\sigma_1}} \dots T^{a_{\sigma_n}})Tr(T^{a_{\sigma'_1}} \dots T^{a_{\sigma'_n}})$$

Colour Configuration -  $EWK \oplus QCD$ 

• Ordinary approach SU(N)-type

$$\mathcal{A}^{a_1...a_n} = \sum Tr(T^{a_{\sigma_1}}...T^{a_{\sigma_n}}) \quad A(\sigma_1...\sigma_n)$$

$$\mathcal{C}_{ij} = \sum Tr(T^{a_{\sigma_1}} \dots T^{a_{\sigma_n}})Tr(T^{a_{\sigma'_1}} \dots T^{a_{\sigma'_n}})$$

Quarks and gluons treated differently

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where  $\sigma_i$  represents the *i*-th permutation of the set  $1, 2, \ldots, n$ .

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where  $\sigma_i$  represents the *i*-th permutation of the set  $1, 2, \ldots, n$ .

- $\star$  quarks  $1 \dots n$
- $\star$  antiquarks  $\sigma_i(1 \dots n)$  and
- $\star$  gluons =  $q\bar{q}$

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where  $\sigma_i$  represents the *i*-th permutation of the set  $1, 2, \ldots, n$ .

- $\star$  quarks  $1 \dots n$
- $\star$  antiquarks  $\sigma_i(1 \dots n)$  and
- $\star$  gluons =  $q\bar{q}$

$$\mathcal{C}_{ij} = \sum D_i D_j = N^lpha_c \;,\;\; lpha = \langle \sigma_1, \sigma_2 
angle$$

• New approach U(N)-type

Each color-configuration amplitude is proportional to

$$D_i = \delta_{1,\sigma_i(1)} \delta_{2,\sigma_i(2)} \dots \delta_{n,\sigma_i(n)}$$

where  $\sigma_i$  represents the *i*-th permutation of the set  $1, 2, \ldots, n$ .

- $\star$  quarks  $1 \dots n$
- $\star$  antiquarks  $\sigma_i(1 \dots n)$  and
- $\star$  gluons =  $q\bar{q}$

$$\mathcal{C}_{ij} = \sum D_i D_j = N^lpha_c \;,\;\; lpha = \langle \sigma_1, \sigma_2 
angle$$

#### $\blacklozenge$ exact color treatment $\Rightarrow$ low color charge

Problem: number of colour connection configurations:  $\sim n!$  where n is the number of gluons or  $q\bar{q}$  pairs.  $\Rightarrow$  Monte-Carlo over continuous colour-space.









The high-colour processes

The idea is to replace colour summation with integration and then follow a MC approach

$$egin{aligned} G^{\mu}_{AB}(P_i) &= \sum_{a=1}^8 G^a(P_i) \eta^a(z) = \sqrt{6} \left( z_{iA} z^*_{iB} - rac{1}{3} \delta_{AB} 
ight) \epsilon^{\mu}_{\lambda}(P_i) \ \psi_A(P_i) &= \sqrt{3} \; u(P_i) \; z_{iA} \ ar{\psi}_A(P_i) &= \sqrt{3} \; ar{u}(P_i) \; z^*_{iA} \end{aligned}$$

In such a representation the amplitude can be seen

$$\mathcal{M}(z_1,z_2,\ldots) = \sum z_1 \cdot z_{\sigma(i)_1} z_2 \cdot z_{\sigma(i)_2} \ldots \mathcal{A}_i$$

and the MC is over

$$\int [dz] \equiv \int \left(\prod_{i=1}^3 dz_i dz_i^*
ight) \delta(\sum_{i=1}^3 z_i z_i^* - 1)$$

where

$$egin{aligned} &\int [dz]G_{AB}G_{CD} = \int [dz]\sqrt{6}\left(z_A z_B^* - rac{1}{3}\delta_{AB}
ight)\sqrt{6}\left(z_C z_D^* - rac{1}{3}\delta_{AB}
ight) \ &= rac{1}{2}\left(\delta_{AD}\delta_{CB} - rac{1}{3}\delta_{AB}\delta_{CD}
ight) \end{aligned}$$

#### Multi-jet processes

Beyond any colour treatment a summation over different flavours is also needed.

Up to now the most straightforward way was to count the distinct processes and then multiply with a multiplicity factor, i.e.

| process                 | Flavour   |  |  |
|-------------------------|-----------|--|--|
| gg  ightarrow ggg       | 1         |  |  |
| $qar{q} 	o ggg$         | 8         |  |  |
| qg  ightarrow qgg       | 8         |  |  |
| qg  ightarrow qgg       | 8         |  |  |
| gg  ightarrow q ar q g  | 5         |  |  |
| $qar{q} 	o qar{q}g$     | 8         |  |  |
| $qar{q} 	o rar{r}g$     | 32        |  |  |
| qq  ightarrow qqg       | 8         |  |  |
| $qar{r} 	o qar{r} g$    | <b>24</b> |  |  |
| qr  ightarrow qrg       | <b>24</b> |  |  |
| $qg  ightarrow qqar{q}$ | 8         |  |  |
| $qg  ightarrow qrar{r}$ | 32        |  |  |
| gq  ightarrow qqar q    | 8         |  |  |
| $gq  ightarrow qrar{r}$ | 32        |  |  |

| initial-state type |                            | distinct processes | multiplicity factor            |  |  |
|--------------------|----------------------------|--------------------|--------------------------------|--|--|
| Α                  | (gg)                       | $C_1(n)$           | $\chi(n_0,n_1,\ldots,n_f;f)$   |  |  |
| В                  | (qar q)                    | $C_2(n)$           | $\chi(n_0,n_2,\ldots,n_f;f-1)$ |  |  |
| С                  | $(gq   { m and}   qg)$     | $C_2(n-1)$         | $\chi(n_0,n_2,\ldots,n_f;f-1)$ |  |  |
| D                  | (qq)                       | $C_2(n-2)$         | $\chi(n_0,n_2,\ldots,n_f;f-1)$ |  |  |
| E                  | $(qq' 	ext{ and } qar q')$ | $C_{3}(n-2)$       | $\chi(n_0,n_3,\ldots,n_f;f-2)$ |  |  |

In order to clarify what we mean we consider the example of the type A initial state. Each distinct process is defined by an array  $(n_0, n_1, \ldots, n_f)$ . For instance, in the case of four-jet production we have

| $(4,\!0,\!0,\!0,\!0,\!0)$ | gg  ightarrow gggg          |
|---------------------------|-----------------------------|
| $(2,\!1,\!0,\!0,\!0,\!0)$ | $gg  ightarrow ggqar{q}$    |
| $(0,\!2,\!0,\!0,\!0,\!0)$ | gg  ightarrow q ar q q ar q |
| $(0,\!1,\!1,\!0,\!0,\!0)$ | gg  ightarrow qar q rar r   |

$$C_1(n) = \sum_{n_0+2n_1+\ldots+2n_f=n} \Theta(n_1 \ge n_2 \ge \ldots \ge n_f)$$

$$C_{2}(n) = \sum_{n_{0}+2n_{1}+\ldots+2n_{f}=n} \Theta(n_{2} \ge n_{3} \ge \ldots \ge n_{f})$$

and

$$C_{3}(n) = \sum_{n_{0}+2n_{1}+\ldots+2n_{f}=n} \Theta(n_{3} \ge n_{4} \ge \ldots \ge n_{f})$$

A distinct process, given by the array  $(n_0, n_1, \ldots, n_f)$  has a multiplicity factor :

$$\chi(n_0, n_1, \dots, n_f; f) = n_f(n_f - 1) \dots (n_f - j + 1)/j!$$

j = f if  $\prod_{i=1}^{f} n_i \neq 0$  j = f - 1 if  $\prod_{i=1}^{f-1} n_i \neq 0$   $\dots$  j = 1 if  $n_1 \neq 0$ j = 0 otherwise

Now we can think of a flavour-MC, so the wave function is multiplied by an  $N_f$ -dimensional array representing flavour,  $\vec{f} = \sqrt{N_f}(f_1, f_2, ...)$  such that  $\langle f_i f_j \rangle = \delta_{ij}$  with a weight proportional to the relevant pdf for initial state flavours

In that case a process like

$$gg \rightarrow ggq\bar{q}q\bar{q}$$

will actually represent a plethora of processes.

The number of distinct processes is now given by

9k + 3 if n = 2k and 9k + 7 if n = 2k + 1

| # of jets               | 2   | 3   | 4   | 5         | 6    | 7    | 8    | 9    | 10         |
|-------------------------|-----|-----|-----|-----------|------|------|------|------|------------|
| # of D-processes        | 12  | 16  | 21  | <b>24</b> | 30   | 34   | 39   | 43   | 48         |
| # of dist.processes     | 10  | 14  | 28  | 36        | 64   | 78   | 130  | 154  | <b>241</b> |
| total $\#$ of processes | 126 | 206 | 621 | 861       | 1862 | 2326 | 4342 | 5142 | 8641       |

### Multi-jet rates

 $p_{T\ i} > 60 \; GeV, ~~ heta_{ij} > 30^o ~~ |\eta_i| < 3$ 

| # jets       | 3     | 4    | 5     | 6                    | 7                     | 8                   |
|--------------|-------|------|-------|----------------------|-----------------------|---------------------|
| $\sigma(nb)$ | 91.41 | 6.54 | 0.458 | $2.97 	imes 10^{-2}$ | $2.21 \times 10^{-3}$ | $2.12	imes 10^{-4}$ |
| % Gluon      | 45.7  | 39.2 | 35.7  | 35.1                 | 33.8                  | 26.6                |

## A new code $\Rightarrow$ JetI

- anybody to tell us how many Feynman graphs in  $gg \rightarrow 8g$ ?
- or  $gg \rightarrow 2g3u3\bar{u}$  ?



Summation/Integration over color



Summation/Integration over color

$$\mathcal{M}(\{p_i\}_1^n, \{arepsilon_i\}_1^n, \{a_i\}_1^n) \sim \sum_{P(2,...,n)} Tr(t^{a_1} \dots t^{a_n}) \mathcal{A}(\{p_i\}_1^n, \{arepsilon_i\}_1^n)$$

$$\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{I_i, J_i\}_1^n) \sim \sum_{P(2,...,n)} \delta_{I_1, P(J_1)} \dots \delta_{I_n, P(J_n)} \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$$

Summation/Integration over color

$$\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{a_i\}_1^n) \sim \sum_{P(2,...,n)} Tr(t^{a_1} \dots t^{a_n}) \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$$

 $\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{I_i, J_i\}_1^n) \sim \sum_{P(2, \dots, n)} \delta_{I_1, P(J_1)} \dots \delta_{I_n, P(J_n)} \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$ 

$$\sum_{\{a_i\}_1^n \{\varepsilon_i\}_1^n} |\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{a_i\}_1^n)|^2 = g^{2n-4} \sum_{\varepsilon} \sum_{ij} \mathcal{A}_i \mathcal{C}_{ij} \mathcal{A}_j^*$$
Summation/Integration over color

$$\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{a_i\}_1^n) \sim \sum_{P(2,...,n)} Tr(t^{a_1} \dots t^{a_n}) \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$$

 $\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{I_i, J_i\}_1^n) \sim \sum_{P(2,...,n)} \delta_{I_1, P(J_1)} \dots \delta_{I_n, P(J_n)} \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$ 

$$\sum_{\{a_i\}_1^n \{\varepsilon_i\}_1^n} |\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{a_i\}_1^n)|^2 = g^{2n-4} \sum_{\varepsilon} \sum_{ij} \mathcal{A}_i \mathcal{C}_{ij} \mathcal{A}_j^*$$

$$\sum_{P(2,...,n)} \sim n^{1/2}$$

Summation/Integration over color

$$\mathcal{M}(\{p_i\}_1^n, \{arepsilon_i\}_1^n, \{a_i\}_1^n) \sim \sum_{P(2,...,n)} Tr(t^{a_1} \dots t^{a_n}) \mathcal{A}(\{p_i\}_1^n, \{arepsilon_i\}_1^n)$$

 $\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{I_i, J_i\}_1^n) \sim \sum_{P(2,...,n)} \delta_{I_1, P(J_1)} \dots \delta_{I_n, P(J_n)} \mathcal{A}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n)$ 

$$\sum_{\{a_i\}_1^n \{\varepsilon_i\}_1^n} |\mathcal{M}(\{p_i\}_1^n, \{\varepsilon_i\}_1^n, \{a_i\}_1^n)|^2 = g^{2n-4} \sum_{\varepsilon} \sum_{ij} \mathcal{A}_i \mathcal{C}_{ij} \mathcal{A}_j^*$$

$$\sum_{P(2,...,n)} \sim n!$$

$$\sum_{\{I_i,J_i\}_1^n} \sim 3^n imes 3^n$$



$$\begin{array}{c} \overset{A}{_{B}} & \longrightarrow & \overset{A}{_{vortex}} & \overset{*}{_{gluon-q-q}} \\ \\ \left[A^{\mu}(P); (A, B)\right] = \sum_{i=1}^{n} \left[ \ \delta(P - p_{i}) \ A^{\mu}(p_{i}); (A, B)_{i}\right] + \\ \\ \sum \left[ (ig) \ \Pi^{\mu}_{\rho} \ V^{\rho\nu\lambda}(P, p_{1}, p_{2}) A_{\nu}(p_{1}) A_{\lambda}(p_{2}) \sigma(p_{1}, p_{2}); (A, B) = (C, D)_{1} \otimes (E, F)_{2} \right] \\ \\ - \sum \left[ (g^{2}) \ \Pi^{\mu}_{\sigma} \ G^{\sigma\nu\lambda\rho}(P, p_{1}, p_{2}, p_{3}) A_{\nu}(p_{1}) A_{\lambda}(p_{2}) A_{\rho}(p_{3}) \sigma(p_{1}, p_{2} + p_{3}); \\ (A, B) = (C, D)_{1} \otimes (E, F)_{2} \otimes (G, H)_{3} \right] \\ \\ + \sum_{P = p_{1} + p_{2}} \left[ (ig) \ \Pi^{\mu}_{\nu} \ \bar{\psi}(p_{1}) \gamma^{\nu} \psi(p_{2}) \sigma(p_{1}, p_{2}); (A, B) = (0, D)_{1} \otimes (C, 0)_{2} \right] \\ \\ \text{where } A, B, C, D, E, F, G, H = 1, 2, 3. \end{array}$$



$$\begin{split} [A^{\mu}(P);(A,B)] &= \sum_{i=1}^{n} [ \ \delta(P-p_{i}) \ A^{\mu}(p_{i});(A,B)_{i}] + \\ [ \ (ig) \ \Pi^{\mu}_{\rho} \ V^{\rho\nu\lambda}(P,p_{1},p_{2})A_{\nu}(p_{1})A_{\lambda}(p_{2})\sigma(p_{1},p_{2});(A,B) &= (C,D)_{1}\otimes(E,F)_{2} ] \\ &+ \\ [ \ (ig) \ \Pi^{\mu}_{\sigma} \ (g^{\sigma\lambda}g^{\nu\rho} - g^{\nu\lambda}g^{\sigma\rho}) \ A_{\nu}(p_{1})H_{\lambda\rho}(p_{2})\sigma(p_{1},p_{2});(A,B) &= (C,D)_{1}\otimes(E,F)_{2} ] \\ &+ \\ [ \ (ig) \ \Pi^{\mu}_{\nu} \ \bar{\psi}(p_{1})\gamma^{\nu}\psi(p_{2})\sigma(p_{1},p_{2});(A,B) &= (0,D)_{1}\otimes(C,0)_{2} ] \\ \text{and} \\ [ H^{\mu\nu}(P);(A,B)] &= \sum_{P=p_{1}+p_{2}} [ \ (ig) \ (g^{\mu\lambda}g^{\nu\rho} - g^{\nu\lambda}g^{\mu\rho}) \ A_{\lambda}(p_{1})A_{\rho}(p_{2})\sigma(p_{1},p_{2}); \\ & (A,B) &= (C,D)_{1}\otimes(E,F)_{2} ]. \end{split}$$









$$N_{\rm CC} = \sum_{A=0}^{n_q} \sum_{B=0}^{n_q-1} \sum_{C=0}^{n_q-A-B} \left( rac{n_q!}{A!B!C!} 
ight)^2 \delta(n_q = A + B + C)$$

$$N_{
m CC} = \sum_{A=0}^{n_q} \sum_{B=0}^{n_q-1} \sum_{C=0}^{n_q-A-B} \left(rac{n_q!}{A!B!C!}
ight)^2 \delta(n_q = A + B + C)$$

| Process          | $\mathbf{N}_{\mathbf{CC}}^{\mathbf{ALL}}$ | N <sub>CC</sub> | $\mathrm{N}_{\mathrm{CC}}^{\mathrm{F}}$ (%) |
|------------------|-------------------------------------------|-----------------|---------------------------------------------|
| gg  ightarrow 2g | 6561                                      | 639             | 59.1                                        |
| gg  ightarrow 3g | 59049                                     | 4653            | 68.4                                        |
| gg  ightarrow 4g | 531441                                    | 35169           | 77.4                                        |
| gg  ightarrow 5g | 4782969                                   | 272835          | 85.0                                        |
| gg  ightarrow 6g | 43046721                                  | 2157759         | 90.4                                        |
| gg  ightarrow 7g | 387420489                                 | 17319837        | 94.0                                        |
| gg  ightarrow 8g | 3486784401                                | 140668065       | 96.4                                        |

| Process                                                                                                                                           | $\mathbf{N}_{\mathbf{CC}}^{\mathbf{ALL}}$ | N <sub>CC</sub> | $\mathrm{N}_{\mathrm{CC}}^{\mathrm{F}}$ (%) |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|---------------------------------------------|
| $gg  ightarrow uar{u}$ $gg  ightarrow guar{u}$ $gg  ightarrow guar{u}$ $gg  ightarrow 2guar{u}$ $gg  ightarrow 3guar{u}$ $gg  ightarrow 4guar{u}$ | 729                                       | 93              | 93.5                                        |
|                                                                                                                                                   | 6561                                      | 639             | 91.6                                        |
|                                                                                                                                                   | 59049                                     | 4653            | 92.6                                        |
|                                                                                                                                                   | 531441                                    | 35169           | 94.6                                        |
|                                                                                                                                                   | 4782969                                   | 272835          | 96.4                                        |
| $gg  ightarrow 5guar{u}$ $gg  ightarrow 6guar{u}$                                                                                                 | 43046721                                  | 2157759         | 97.8                                        |
|                                                                                                                                                   | 387420489                                 | 17319837        | 98.6                                        |
| $gg  ightarrow c ar{c} c ar{c}$                                                                                                                   | 6561                                      | 639             | 99.1                                        |
| $gg  ightarrow g c ar{c} c ar{c}$                                                                                                                 | 59049                                     | 4653            | 98.8                                        |
| $gg  ightarrow 2g c ar{c} c ar{c}$                                                                                                                | 531441                                    | 35169           | 99.0                                        |
| $gg  ightarrow 3g c ar{c} c ar{c}$                                                                                                                | 4782969                                   | 272835          | 99.3                                        |
| $gg  ightarrow 4g c ar{c} c ar{c}$                                                                                                                | 43046721                                  | 2157759         | 99.6                                        |

| Process                                                                                | $\sigma_{ m MC}$ ± $\epsilon$ (nb)                                                                                         | $\varepsilon~(\%)$ |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| gg  ightarrow 7g<br>gg  ightarrow 8g<br>gg  ightarrow 9g                               | $(0.53185 \pm 0.01149) \times 10^{-2}$<br>$(0.33330 \pm 0.00804) \times 10^{-3}$<br>$(0.17325 \pm 0.00838) \times 10^{-4}$ | 2.1<br>2.4<br>4.8  |
| $gg  ightarrow 5guar{u}$ $gg  ightarrow 3gcar{c}car{c}$ $gg  ightarrow 4gcar{c}car{c}$ | $(0.38044 \pm 0.01096) \times 10^{-3}$<br>$(0.95109 \pm 0.02456) \times 10^{-5}$<br>$(0.81400 \pm 0.02583) \times 10^{-6}$ | 2.8<br>2.6<br>3.2  |

| Process                                                                                                                                                                                | $\sigma_{ m MC}$ ± $\epsilon$ (nb)                                                                                                                                                          | arepsilon~(%)            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $gg  ightarrow Zuar{u}gg g g  ightarrow W^+ar{u}dgg g g  ightarrow W^+ar{u}dgg g g  ightarrow ZZuar{u}gg g g  ightarrow W^+W^-uar{u}gg$                                                | $\begin{array}{l}(0.18948 \pm 0.00344) \times 10^{-3}\\(0.62704 \pm 0.01458) \times 10^{-3}\\(0.16217 \pm 0.00420) \times 10^{-6}\\(0.27526 \pm 0.00752) \times 10^{-5}\end{array}$         | 1.8<br>2.3<br>2.6<br>2.7 |
| $egin{aligned} dar{d} & ightarrow Zuar{u}gg \ dar{d} & ightarrow W^+ar{c}sgg \ dar{d} & ightarrow ZZggggg \ dar{d} & ightarrow ZZggggg \ dar{d} & ightarrow W^+W^-ggggg \end{aligned}$ | $\begin{array}{l} (0.38811 \pm 0.00569) \times 10^{-5} \\ (0.18765 \pm 0.00453) \times 10^{-5} \\ (0.99763 \pm 0.02976) \times 10^{-7} \\ (0.52355 \pm 0.01509) \times 10^{-6} \end{array}$ | 1.5<br>2.4<br>2.9<br>2.9 |

### PHEGAS

• Phase space

$$d\Phi_n = (2\pi)^{4-3n} \prod_{i=1}^n rac{d^3 p_i}{2E_i} \delta\left(\sum E_i - w
ight) \delta^3\left(\sum ec p_i
ight)$$

• RAMBO, VEGAS-based nice but completely inefficient!

$$d\sigma_n = \mathrm{FLUX} imes |\mathcal{M}_{2 
ightarrow n}|^2 d\Phi_n$$

need appropriate mappings of peaking structures, plus optimization!

 Efficiency ⇒ to a large number of generators, each one for a specific class of processes. Multichannel approach

$$\mathcal{I} = \int f(ec{x}) d\mu(ec{x}) = \int rac{f(ec{x})}{p(ec{x})} p(ec{x}) d\mu(ec{x})$$

$$p(ec{x}) = \sum_{i=1}^{M_{ch}} lpha_i \ p_i(ec{x}) \qquad \sum_{i=1}^{M_{ch}} lpha_i = 1 \ \mathcal{I} o \left\langle rac{f(ec{x})}{p(ec{x})} 
ight
angle \quad \mathcal{E}^2 N o \left\langle \left(rac{f(ec{x})}{p(ec{x})}
ight)^2 - \mathcal{I}^2 
ight
angle$$

 $\star \text{ Optimize } \alpha_i \Rightarrow \text{ Minimize } \mathcal{E} \star$ 

R.Kleiss and R.Pittau, Comput. Phys. Commun. 83, 141 (1994).

# New Dyson-Schwinger equations: subamplitude is a combination of several peaking structures!

## problem unsolved?

### **QCD** antennas

P.D.Draggiotis, A.van Hameren and R.Kleiss, hep-ph/0004047.



New Dyson-Schwinger equations: subamplitude is a combination of several peaking structures!

problem unsolved? QCD antennas

 $P.D.Draggiotis, A.van \ Hameren \ and \ R.Kleiss, \ hep-ph/0004047.$ 

Old Feynman graphs: exhibit single peaking structure! problem solved Back to Feynman graphs:



The corresponding intrinsic representation looks like

| <b>62</b> | -2        | 4         | -2 | <b>58</b> | <b>31</b> |
|-----------|-----------|-----------|----|-----------|-----------|
| <b>58</b> | <b>31</b> | 2         | -2 | <b>56</b> | <b>2</b>  |
| <b>56</b> | <b>2</b>  | <b>48</b> | 33 | 8         | 1         |
| <b>48</b> | 33        | 16        | -3 | <b>32</b> | 4         |



http://www.cern.ch/helac-phegas/

- Complete generation for pp and  $p\bar{p}$  collisions, including all sub-processes. We do not exclude any processes!
- Interfacing with Pythia, including CKKW-like reweighting and use of UPVETO à la MLM.
- The new version, to become publicly available very soon. Suitable for multi-color final states (more than 7 equivalent gluons at the final state, i.e. 14 quarks (antiquarks) !)

#### Higher-order corrections

- Fermion-loop corrections have been implemented and studied for up to 3-point vertices.
- We have started the computation of 4-point contributions.
  - FORM has been used to reduce the expressions to
     Passarino-Veltman coefficient functions
  - FF has been updated to include level-4 tensor coefficient functions for 4-point integrals.
  - Implementation and checking in HELAC is in progress.
- This implementation will allow to study 4 fermion  $+\gamma$  and 6 fermion production including the running of electroweak couplings.

• Fermion-loop corrections to six-fermion production process

$$e^-e^+ 
ightarrow \mu^- ar{
u}_\mu u ar{d} \, au^- au^+$$

- Number of Feynman Graphs: 208
- Number of DS vertices: 140
- Cuts:  $E_l, E_q > 5 \text{GeV}$  and  $m_{ll}, m_{qq} > 10 \text{GeV}$
- Results: E = 500 GeV
- $\sigma_0/ab = 54,96(26) \ \sigma_1/ab = 57,31(28) \ K/100 = 4.28(2)$
- MC data: generated: 1M(961792) used: 404842 time: 6 1/2 h

$$\begin{split} N(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[ d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[ c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} \bar{D}_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[ b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} \bar{D}_i \\ &+ \sum_{i_0}^{m-1} \left[ a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} \bar{D}_i \\ &+ \tilde{P}(q) \prod_{i}^{m-1} \bar{D}_i \,. \end{split}$$

$$q^{\mu} = -p_{0}^{\mu} + y_{1}k_{1}^{\mu} + y_{n}n^{\mu} + y_{7}\ell_{7}^{\mu} + y_{8}\ell_{8}^{\mu}.$$

$$n \cdot k_{1} = 0, \text{ and } n^{2} = -k_{1}^{2}$$

$$k_{1}^{\ \mu} = \overline{k_{1}}^{\ \mu} + \frac{k_{1}^{\ 2}}{2k_{1} \cdot r}r^{\mu} \qquad n^{\mu} = \overline{k_{1}}^{\ \mu} - \frac{k_{1}^{\ 2}}{2k_{1} \cdot r}r^{\mu}$$

$$\ell_{7}^{\ \mu} = \overline{u}_{-}(\overline{k_{1}})\gamma^{\mu}u_{-}(r) \qquad \ell_{8}^{\ \mu} = \overline{u}_{-}(r)\gamma^{\mu}u_{-}(\overline{k_{1}})$$

$$= -p_{0}^{\mu} + \frac{[(q + p_{0}) \cdot k_{1}]}{k_{1}^{2}}k_{1}^{\mu} - \frac{[(q + p_{0}) \cdot n]}{k_{1}^{2}}n^{\mu} + \frac{[(q + p_{0}) \cdot \ell_{8}]}{(\ell_{7} \cdot \ell_{8})}\ell_{7}^{\mu} + \frac{[(q + p_{0}) \cdot \ell_{7}]}{(\ell_{7} \cdot \ell_{8})}\ell_{8}^{\mu}$$

 $q^{\mu}$ 

$$\int d^{d}q \frac{q^{\mu}q^{\nu}}{\overline{D_{0}}\overline{D_{1}}}$$

$$\frac{(-m0^{2} + m1^{2} + x^{2}) g^{m n} x^{2} + 4(m0^{2} - m1^{2} + 2x^{2}) p_{1}^{m} p_{1}^{n}}{12x^{4}}$$

$$\frac{(m0^{2} - m1^{2} + x^{2}) (x^{2} g^{m n} - 4 p_{1}^{m} p_{1}^{n})}{12x^{4}}$$

$$\frac{4\left(\mathrm{m0^{4}} + (x^{2} - 2\,\mathrm{m1^{2}})\,\mathrm{m0^{2}} + (\mathrm{m1^{2}} - x^{2})^{2}\right)p_{1}^{m}\,p_{1}^{n} - x^{2}\left(\mathrm{m0^{4}} - 2\,(\mathrm{m1^{2}} + x^{2})\,\mathrm{m0^{2}} + (\mathrm{m1^{2}} - x^{2})^{2}\right)g^{m\,n}}{12x^{4}}$$

$$\frac{D_0}{\overline{D}_0} \to \frac{\overline{D}_0 - \widetilde{q}^2}{\overline{D}_0} \to \frac{\widetilde{q}^2}{\prod \overline{D}_i}$$

$$\begin{split} \int d^n \bar{q} \frac{\tilde{q}^4}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} &= -\frac{i\pi^2}{6} + \mathcal{O}(\epsilon) \,, \\ \int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j \bar{D}_k} &= -\frac{i\pi^2}{2} + \mathcal{O}(\epsilon) \,, \\ \int d^n \bar{q} \frac{\tilde{q}^2}{\bar{D}_i \bar{D}_j} &= -\frac{i\pi^2}{2} \left[ m_i^2 + m_j^2 - \frac{(p_i - p_j)^2}{3} \right] + \mathcal{O}(\epsilon) \end{split}$$

Nice procedure to numerically attack the problem of computing arbitrary scattering amplitude at the one-loop level

Tests already completed with 4-photon amplitude at one loop

≻Next-to-trivial the 6-photon amplitude















Generalized vertices approach

- Tree structure with effective quantum action vertices
- Re-normalized vertices

One-particle irreducible (1PI) graphs !




## Outlook

- **PHEGAS** / **HELAC**: a framework for high-energy phenomenology
- Standard Model fully included
- ★ High color charge processes: multijet production

   P.Draggiotis, R.H.Kleiss and C.G.Papadopoulos, Phys. Lett. B439 (1998) 157;
   Eur. Phys. J. C 24 (2002) 447 hep-ph/0202201
   C. G. Papadopoulos and M. Worek, arXiv:hep-ph/0512150
- **\*** Higher order corrections
  - Direct approach. Ongoing work to better understand
     Dyson-Schwinger equations and loop calculations: stepping
     equations, recursive actions, etc.
  - Running couplings and masses: 4-point FL contributions and BBC non-local approch to go beyond 4-fermion final states.
- SUSY and new particles

wait and see

HEP - NCSR Democritos