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applications 



Highlights of the history of the method    

Analyses of two-particle cuts in Regge kinematics                   Gribov

Factorization of photons with small transverse momenta Gribov

Quark-quark scattering amplitudes Kirschner-Lipatov

Infrared cut-off in the transverse momentum space Lipatov

Generalization of Gribov bremsstrahlung theorem Ermolaev-Fadin

to QCD ,   inelastic quark form factors -Lipatov            

QCD inelastic processes in Regge kinematics Ermolaev-Lipatov

Applications to Polarized Deep-Inelastic scattering Bartels-Ermolaev

-Manaenkov-Ryskin- Greco-Troyan

Applications to electroweak reactions Fadin-Lipatov-Martin-Melles, 
Ermolaev- Greco-Troyan



Essence of the method

s
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In order to regulate IR divergences 

ntroduce IR cut-off           for all virtual 

particles:

µ  k >⊥

DL  contributions arrive from the integration region where ||k   k <⊥

the cut-off works both in the longitudinal and in the transverse space

Typical Feynman

graph

g g

qq

Scattering amplitude  for a 

QED, QCD, or  EW  reaction

µ 

Lipatov



DL contributions come from the region where  transverse momenta are 

widely different           one can factorize the phase space into a set of 

separable sub-regions, in each region some virtual particle has minimal

Let us call such a particle the softest one. 
⊥k

DL  contributions of softest particles can be factorized and their transverse 

momentum plays the role of a new IR cut-off for integration over other virtual

momenta

When           >> involved masses, one can drop the masses  and be 

free of IR singularities.

The softest particle can be either boson (gluon) or fermion (quark)

µ 



Case A: the softest particle is gluon. It can be factorized in this way:

µ =
+

+

+ symmetric 

contributions

k

k

k

⊥kµ is the lowest limit for integration over ),,( tskFdk ⊥⊥∫
µ

Factorized softest gluons

of the softest gluon only. 

It does not involve other momenta



µ =
+

+

+ symmetric 

contributions
⊥k

⊥k
⊥k

k

k

k

New IR cut-offs for integrations 

over transverse momenta of other 

virtual particles

⊥kµ Is replaced by In the blobs with factorized gluons



Case B. The softest particle is a quark. It can also be factorized:

µ =
+

k k

⊥k

⊥k

⊥k

⊥k

DL contributions arrive from the region s<< ⊥
2k t -

Case B is absent when s ~ - t  hard kinematics  but contributes to

Regge kiinematics

Combining cases A and B and adding Born contributions leads to IREE

s

t



Simplest application: Asymptotics  of  form factors of electron 

and quark

Electromagnetic fermion   vertex:
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Consider the vertex in the kinematics: |q2 |>> p21= p
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q Form factors



Composing IREE for  the  form  factors.  

Step 1: introduce , 

Step  2: factorize the  softest photon  or gluon, 

Step 3: add the  initial,  “Born” term 

µ

+
=

µ
⊥k

k

Factorized  softest boson

Born  term

cut-off  for other

integrations

Blob  is on-shell
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For   form  factor  f(q2), the Born term  = 1

For   form  factor  g(q2), the “Born “ term  = ,ln
2
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Mass of the 

fermion

Sudakov
Ermolaev- Troyan



Inelastic form factor of a quark gluonsqqee n  +→−+

p2p1

q

k

IREE for the form factor:  look for the softest boson

Step  1: factorize the emitted gluon in the region

Step 2: factorize the softest virtual gluon in the region '

⊥⊥ >> kk

'

⊥⊥ << kk
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Solution
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Expressions for emission of n gluons are obtained similarly

Ermolaev-

Fadin-
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Exponentiation of electroweak double logarithms

Mass scale is more involved:       , MZ, MWµ
Assumption: MZ= MW =M and M can be treated as the second cut-off

= + + +

photon Z-boson W-boson

M,µ Mk ,⊥
⊥k

⊥k



Solution Fadin-Lipatov-Martin-Melles
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Deep Inelastic Scattering

Incoming 
lepton

outgoing lepton-
registered

Incoming hadron

Produced hadrons 

- not registered

k

p

k’

X

virtual photon

q



Leptonic tensor

hadronic tensor 
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Does not depend 
on spin

Spin-dependent

µνW

symmetric antisymmetric

µ ν

p p

q q
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The spin-independent part of Wmn is parameterized by two structure 

functions:

where p is the hadron momentum,  q is the virtual photon momentum 

(Q2 = - q2 > 0). Both of the  functions depend on  Q2 and x = Q2 /2pq,   0< x < 1. 

F2 2xF1 when x        0

Projection operators respect Lorentz and gauge symmetries

0== µννµνµ WqWq



In the QCD framework, he spin-dependent part of Wmn is also 

parameterized by two structure functions:
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where m, p and S are the hadron mass, momentum and spin; 

q is the virtual photon momentum (Q2 = - q2 > 0). Again both   functions 

depend on  Q2 and x = Q2 /2pq,   0< x < 1. They measure asymmetries

g1 measures the longitudinal spin flip ↑↓↑↑ −∝
LL

g σσ  1

g1 +g2 measures the transverse spin flip

↑↓↑↑ −∝+
TT

gg σσ  21



FACTORISATON: is a convolution of the 

the partonic tensor and probabilities to find a polarized parton 

(quark or gluon) in the hadron :

=µνW

W
quark

Fquark

Wgluon

Fgluon

+

q q

p p

µνW

DIS off 
quark

DIS off 
gluon

Probability to find 
quark

Probability to 
find gluon



gWqWW
gluonquark δδ µνµνµν ⊗+⊗=

Initial quark 
distribution

Initial gluon 
distribution

DIS off the quark, DIS off the gluon

DIS off quark and gluon can be studied with perturbative QCD, with 

calculating  involved Feynman graphs. 

Probabilities, Fquark and Fgluon involve non-perturbaive QCD. There is no a 

regular analytic way to calculate them. Usually they are defined from  

experimental data at large x and small Q2 , they are called the initial quark 

and gluon densities and are denoted dq and dg .

So, the conventional form of the hadronic tensor is:

are calculated with methods of Pert QCD
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1 QygyxCQyqyxCQxg gq ∆⊗+∆⊗=

Evolved quark

distribution

In particular, g1:

Coefficient 

function

The Standard Approach includes the Altarelli-Parisi alias DGLAP 

alias Q2- Evolution Equations  and the Standard Fits for initial paron 

densities

Evolution Equations: Altarelli-Parisi, Gribov-Lipatov, Dokshitzer

Coefficient 

function

Evolved gluon

distribution



gggqqgqq PPPP  ,  ,  ,

gPqP
Qd

qd
qg

s
qq

s ∆⊗+∆⊗=
∆

π
α

π
α

22ln 2

DGLAP evolution equations
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are splitting functions

Mellin transform of the splitting functions = anomalous dimensions



The Standard Approach includes the  DGLAP Evolution Equations  and the 

Standard Fits for initial parton densities. One can say that SA combines 

Science and Art

LO splitting 

functions
Ahmed-Ross, Altarelli-Parisi,  Sasaki,

NLO splitting 

functions

Floratos, Ross, Sachradja, Gonzale- Arroyo, 

Lopes, Yandurain, Kounnas, Lacaze, Curci, 

Furmanski, Petronzio, Zijlstra, Mertig, 
van Neerven,  Vogelsang

Coefficient 
functions 
C(1)

k , C
(2)

k 

Bardeen, Buras, Muta, Duke, Altarelli, Kodaira, 

Efremov, Anselmino, Leader, Zijlstra, 
van Neerven

SCIENCE
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In DGLAP, coefficient functions and anomalous dimensions are known 

with LO and NLO accuracy, often at integer  w = n



1

Q2
m2

x-evolution of Dq with 

coefficient function
Q2 -evolution of dq with 

anomalous dimension

evolved quark density

Dq at x~1 and 

Q2 .>> m2

F1, g1 at x<<1 

and Q2 >> m2

dq at x ~1 and Q2 ~ m2 

defined from fitting exp 

data

Starting point of
Q2 -evolution

1/x
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There are  different fits for initial parton densities. For example,

= the art of  composing the fits for initial parton densities

Altarelli-Ball-Forte-Ridolfi,   Blumlein- Botcher, Leader- Sidorov-

Stamenov, Hirai et al

Altarelli-Ball-
Forte-Ridolfi,

Parameters should be fixed from experimentδγβα  , , , ,N

This combination of Science and Art works well at large and small x, though 

strictly speaking, DGLAP is not supposed to work at the small- x region:
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Coefficient function Anomalous dimension

Initial quark density

Pert QCD

Non-Pert QCD

For example, for the simplest case of the non-singlet g1



Large x

1/x

1

m2
Q2

DGLAP –region 

ln(1/x) are small

DGLAP accounts for ln(Q2) to 

all orders in as and neglects
k

s

k

s xx ))/1ln(( ,))/1(ln( 2 αα with k>2

ln(1/x) are large

However, these contributions become leading at small x and should be 

accounted for to all orders in the QCD coupling.

Small x



1

Q2
m2

Q2 -evolution , total resummation   of 

g1 at small x
and large Q2 

starting point 

x-evolution, total resummation of

k

s Q ))/ln(( 22 µα

1/x

k

s

k

s xx ))/1ln((,))/1(ln( 2 αα

DGLAP
yes

no

DGLAP cannot do total resummation of logs of x because of the 

DGLAP-ordering – KEYSTONE of DGLAP
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K2

K1

DGLAP –ordering:
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good approximation for large x when logs of x can 

be neglected.  At x << 1 the ordering has to be lifted

q

p DGLAP small-x asymptotics of g1  is well-known:
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DGLAP
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if the initial parton densities are not singular functions of x

When the DGLAP –ordering is lifted and leading logarithms of x are 

taken into account, the asymptotics is different



The leading contributions for g1 at small x are double-logarithmic 
(DL).  Sub-leading contributions are single-logarithmic (SL)

DL  contributions
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SL contributions

Total resummation of DL contributions = 

Double-Logarithmic Approximation (DLA)
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1 )/(Q (1/x) ~ ∆∆ µDL
g Bartels- Ermolaev-

Manaenkov-Ryskin

intercept

Obviously
DGLAPDL

gg 11 >> when x���� 0

In DLA, asymptotics of g1 is

whereas DGLAP predicts
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Piece of terminology

Contributes 

to nonsinglet

Contribute to singlet

Initial quark

Each structure function has both the non-singlet and singlet components:

g1 = g1
NS + g1

S



,)/3(8  1/2

s πα=∆NS

singlet intercept
1/2

s )/2(3 3.45  πα=∆S

The weakest point of this approach: the QCD coupling as
is fixed at an unknown scale. 

On the contrary, DGLAP equations have always operated with running as

)(  2
Qss αα =

Amati-Bassetto-Ciafaloni-Marchesini

- Veneziano;  Dokshitzer-Shirkov
Arguments  in favor of the 

Q2- parameterization:

non- singlet intercept

DGLAP-

parameterization

Intercepts of g1 in Double-Logarithmic Approximation:
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⊥= kss ααOrigin: in each  ladder rung

DGLAP-parameterization

However, such a parameterization is 

good for large x only. At small x  :
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⊥⊥⊥ ≈+≈−= kxkkkk ssss αααα

Ermolaev-Greco-Troyan

When DGLAP-

ordering is used  and  

x ~1time-like argument

Participates in the 

Mellin transform
space-like 
argument, 

no Mellin 
transform

)(  2
Qss αα =DGLAP -parametrization
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F Fborn= +

DIS  structure functions obey 

the Bethe-Salpeter equation:
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Integral  over  m2 is interpreted as a dispersion relation: Dokshitzer-

Shirkov

when  x close to 1

However this interpretation is valid for large x only, when
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fraction of longitudinal 

moment
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1 when x of role  theplays s <<α

At  x<<1 and with the leading logarithmic accuracy one can

Integrate  over m2:

However,  it is better to do the Mellin transform
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This restriction guarantees the applicability of Pert QCD



Expression for the non-singlet g1 at large Q
2: Q2 >> 1 GeV2 
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Coefficient 

function

Anomalous 
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Initial quark density

New coefficient function and anomalous dimension sum up leading logarithms

to all orders in as
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Compare our non-singlet anomalous dimension to the LO DGLAP one:

expand C and H into series in

small/large x small/large n
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Expression for the singlet g1 at large Q2:

here
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Large Q2 means
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Small –x symptotics of g1: when x ���� 0, the saddle-point method leads to

Nonsinglet  intercept 0.42  NS =∆

0  >qδ 01 >NS
g

At large x, g1
NS and g1

S are positive

In the whole range of x at any Q2
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g 0.064 - q - )S( S δδ=∆

With intercept 0.86  S =∆

Asymptotics of the singlet g1 are more involved

Warning: asymptotic expressions g1~(1/x)D are reliable at x<10-5

and

Interplay between the quark and  gluon densities can lead to different  

sign of g1 singlet at x<<1 



qgr δδ /=

g1>0

g1<0
r

g1

r = -15.6

S(r) = -1 – (1/15.6) r

Fine tuning: g1>0 at large x
but g1=0 at x<<1

At large x, g1 singlet is positive .  When x--> 0, the sign of asymtpotics of  

the singlet g1 depends on the ratio between the initial parton densities

g1 singlet is
always >0

g1 >0  at 

large x but
g1<0 at x<<1



Anatomy of the singlet intercept

A. Graphs with 

gluons   only:
1.1  =∆S

violates unitarity

B. All graphs
0.86  =∆S

No violation of unitarity

Values of the 

intercepts 

perfectly agree

with results of 

several groups 

who fitted 

experimental data. 

similar to LO BFKL

non-singlet

intercept

singlet

intercept

Soffer-Teryaev, Kataev-Sidorov-

Parente, Kotikov-Lipatov-Parente-
Peshekhonov-Krivokhijine-Zotov, 

Kochelev-Lipka-Vento-Novak-

Vinnikov



(x)  )( δδ =xq 1  )( =ωδq

in x- space in Mellin space

Numerical comparison shows that the impact of the total resummation of 

logs of x becomes quite sizable at x = 0.05 approx. 

Hence, DGLAP should have Failed  at x < 0.05. 

However, it does not take place. 

Comparison of our results to DGLAP at finite x –no asymptotic formulae used

Comparison depends on the assumed shape of initial parton densities. 

The simplest  option: use the bare quark input



Altarelli-Ball-Forte-

Ridolfi

singular

factor

75.0  ,3.34 ,7.2  ,58.0 ≈≈≈≈ δγβα

])1)(x  1[( x)( - βδα γδ xNxq −+=

normalization

In order to understand what could be the reason for success of DGLAP at 

small x, let us consider in more detail  

standard fits for initial parton densities. 

regular factors

parameters

are fixed from fitting experimental data at large x



In the Mellin space this fit is

)])1()(()[()( 11

1

1 −−
∞

=

− −+++−++−= ∑ αωγαωαωωδ kkcNq
k

k

Leading pole

a=0.58 >0

Non-leading poles

-k +a<0

the small-x DGLAP asymptotics of g1 is (inessential factors  dropped )

α(1/x) ~1

DGLAP
g

Comparison it to our asymptotics

( ) NSx
∆

/1~g   1

shows that the singular factor in the DGLAP fit mimics  the 

total resummation of ln(1/x) . However, the  value a = 0.58 

sizably differs from our non-singlet intercept  =0.4

phenomenology

calculations



Although our and DGLAP asymptotics lead to the x- behavior of

Regge type, they predict different intercepts for  the  x- dependence  

and different Q2  -dependence: 

( ) 2/22

  1 / )/1(~g 
∆∆ µQx

whereas  DGLAP predicts the steeper 

x-behavior and

the flatter Q2   -behavior:

)(2

1 )(ln(1/x) ~ αγα
Qg

DGLAP

x-asymptotics was checked 

with  extrapolating available 

exp data to x���� 0. 

It agrees with our values of D 
Contradicts DGLAP

our and the DGLAP 

Q2 –asymptotics have not

been checked yet.  

our calculations

DGLAP 

Common opinion: the total resummation is not relevant at available x

Actually: the resummation has always been accounted for through the 
standard fits, however without realizing it 



Structure of DGLAP fit once again:

])1)(x  1[( x)( - βδα γδ xNxq −+=

Can be dropped when 

ln(x) are resummed

x-dependence is weak at x<<1 and can be 

dropped

Common  opinion: fits for dq   are singular  but defined and large x,

then convoluting them with coefficient functions weakens the singularity

)()(),( xqyqyxC ∆=⊗δ Obviously, it is not true:

They both are singular equally

ax)  N(1  )( +≈xqδTherefore at x << 1

initial x-evolved



Numerical comparison of DGLAP with our approach at small but 

finite x, using the same DGLAP fit for initial quark density. R
x 12 3
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2

R = g1
our/g1

DGLAP 

Regular term in g1
our vs 

regular + singular in g1
DGLAP

Only regular factors in 

g1
our and g1

DGLAP 

Whole fit in g1
our and g1

DGLAP:

regular + singular

x



Comparison between DGLAP and our approach at small x

DGLAP our approach

coeff functions and anom 

dimensions are calculated with 

two-loop accuracy

coeff functions and anom

dimensions sum up DL  and SL 

terms to all orders

To  ensure the Regge behavior,

singular in x terms in initial 
partonic densities are used

Regge behavior is achieved 

automatically, even when the 

initial densities are regular in x 

Equivalent to inserting a

phenomenological  

asymptotic factor into 

expressions for g1  but

Asymptotics  of g1 are never used 

in expressions for g1 at finite x

warning: using asymptotic formulae  for g1

is unreliable at x > 10-5



WAY OUT – synthesis of our approach and DGLAP

1. Expand our formulae for coefficient functions and anomalous  

dimensions into series in the QCD coupling

2. Replace the first- and second- loop terms  of the expansion by 

corresponding DGLAP –expressions

DGLAP

Good at large x because 

includes exact two-loop 

calculations but bad at small x

as lacks the total resummaion

of ln(x)

our approach

Good at small x , includes the total 

resummaion of ln(x) but bad at large x

because neglects some contributions 

essential in this region 

Comparison between DGLAP and our approach at any x



New, “synthetic” formulae accumulate all advantages of the both 

approaches and should  equally be good at large and small x. 

New fits should not involve singular factors

Our expressions

))(/()(   ))](()[2/1()( 2/12 ωωωωωωωω HCBH −=−−=

anomalous dimension
coefficient function

First tems of their expansions into the perturbation series
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New, “synthetic” formulae:

DGLAPLODGLAPLO CCCcHHHh  1 1    +−=+−=



COMPASS is a high-energy physics experiment at the Super Proton 

Synchrotron (SPS) at CERN in Geneva, Switzerland. The purpose of

this experiment is the study of hadron structure and hadron 

spectroscopy with high intensity muon and hadron beams.

On February 1997 the experiment was approved conditionally 

by CERN and the final Memorandum of Understanding was signed in 

September 1998. The spectrometer was installed in 1999 - 2000 and 

was commissioned during a technical run in 2001. Data taking started 

in summer 2002 and continued until fall 2004. After one year shutdown 

in 2005, COMPASS will resume data taking in 2006.

Nearly 240 physicists from 11 countries and 28 institutions work in

COMPASS

Taken from wwwcompass.cern.ch



COMPASSCOMPASSCOMPASSCOMPASS

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Artistic view of the 60 m long COMPASS

two-stage spectrometer. The two 

dipole magnets are indicated in red

Taken from wwwcompass.cern.ch



COMPASS operates with small Q2 (Q2 < 10-1 GeV2) and small x ~10-3

In  order to generalize our results to the region of small Q2 , one should 

remember that                        is  the result of the integration)/ln( 22 µQ

∫
⊥

⊥

2

2

2

2Q

k

dk

µobained for large Q2 with logarithmic accuracy. 

For arbitrary Q2 one can use the prescription:

zxx +=+=→+→  )/2pq(Q     x          QQ 22222 µµ

Infrared  cut-off Similar to the Nachtmann 

variable



k+q
k k

q
q

g1= L is the result of evolving the 

initial parton density with 

respect to 2pk at fixed k2.        

It accumulates the total 

resummation of leading logs of 

the invariant energy 2pk

The only source of Q-dependence
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kkd
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Obviously, g1 obeys the Bete-Salpeter equation: 

p p
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Using the Sudakov parameterization

leads o the following integral  representation for g1 at x<<1
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w

This integral can approximately be calculated at Q2 >> m2 and
at Q2  << m2.  The both cases can approximately be written through 
the shift      Q2 Q2 + m2
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Coefficient 

function

Anomalous 

dimension

Initial quark density
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µ

weak x -dependence

weak Q2 -dependence

It leads to new expressions: non-singlet g1 at small Q
2



22 µ<<Q

Singlet g1 
at small Q2

both x- and Q2- dependences are flat, even for  x<<1. when

g1

1/x

Location of the line is 

determined by the z-
dependence
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Ng/Nq = 0 Ng/Nq = -5 Ng/Nq = -8

,)2/( 1

2

1 GNeg qq=

, , qq NqNq ≈≈ δδ

Ng/Nq <  -15.6

Approximating

Position of the turning point is sensitive to Ng/Nq ,  so the  experimental 

detection  of it will allow to estimate Ng/Nq  
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perform numerical 

calculations of G1



Power Corrections to non-singlet g1

PC are supposed to come from higher twists. 

No satisfactory theory 

is known for the higher twists 

Standard way of obtaining PC from experimental

data at small x:                                               Leader-Stamenov- Sidorov

Compare experimental data to predictions of the Standard Approach

and assign the discrepancy to the  impact of PC
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DGLAPLT
gg 11 =

Leading twist 

contribution

Power 

corrections

mass scale: Q2 > M2



Counter-arguments:

1. DGLAP, the main ingredient of SA,  is unreliable at small x, so 

comparing experiment to it is not productive

2. SA cannot explain why PC appear at Q2 > 1 GeV2 only and 

predict what happens at smaller Q2

Our approach :
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where w = 2pq and Q2 can be large or small,  m = 1 GeV



As m =1 GeV, at Q2 > 1 GeV2  expansion into series is 
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These power corrections have perturbative origin and should

be accounted in the first place. Only after that one can estimate 

a genuine impact of higher twist contributions 

When Q2 < 1 GeV2, PC are different: 
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NS  

does not depend on Q2
Power corrections



Conclusion

Infrared Evolution Equations Approach is a simple and efficient 

instrument for performing total resummations of Double- Log 

and a certain part of Single- Log contributions to  processes in QCD, 

QED and electroweak reactions in  the hard and Regge kinematics 

Being applied to the Polarized DIS, this approach can be regarded 

as an alternative to the Standard Approach 



Standard Approach

DGLAP was originally developed for operating at the region where both x 
and Q2 are large. Basic ingredients of the DIS structure functions – coefficient 

functions and splitting functions (anomalous dimensions) are calculated in 

DGLAP in the first and second loops.  By construction, DGLAP describes the 

Q2–evolution but cannot  describe the x–evolution. Accounting for the x–

evolution is especially important in the small-x region.  

In order to extend DGLAP to the region of small x and large Q2, it have been 

complemented with rather complicated expressions for the initial parton

densities  dq and dg found from fitting experimental data.

DGLAP + Standard fits form Standard Approach (SA). SA describes DIS at 

large Q2 and arbitrary x.



. 

We have obtained the model-independent description of g1 combining total 

resummation of leading logarithmic contributions and DGLAP expressions. 

Represent g1 at arbitrary x and Q2 .

DGLAP agrees with experimental data only when special expressions for 

initial parton densities are used. They include singular factors, though DGLAP

offers no theoretical explanation of the origin of the factors 

Actually, the singular factors mimic total resummation of leading logarithms

When the resummatiion is accounted for, the expressions for initial parton 

densities can be simplified down to constants  

The region of small Q2 is also beyond the reach of SA.  We predict that g1

at small Q2 is almost  independent of x, even at x<< 1. Instead, it 

depends on 2pq only.  At a certain relation between the initial quark and 

gluon densities, g1 can be pretty close to zero in the range of 2pq

investigated now experimentally by COMPASS.

Besides genuine PC from higher twists, there are perturbative PC. They should 

be accounted in the first place and only after that the impact of higher twists

can be estimated


