Epiphany Conference, January, 4-6 2007, Cracow

Infrared Evolution Equations method and its applications

B.I. Ermolaev

Highlights of the history of the method
Analyses of two-particle cuts in Regge kinematicsGribov
Factorization of photons with small transverse momenta
Infrared cut-off in the transverse momentum space
Gribov
Quark-quark scattering amplitudes
Kirschner-Lipatov
Generalization of Gribov bremsstrahlung theoremto QCD , inelastic quark form factorsErmolaev-Fadin-Lipatov
QCD inelastic processes in Regge kinematics
Ermolaev-Lipatov
Applications to Polarized Deep-Inelastic scattering Bartels-Ermolaev-Manaenkov-Ryskin- Greco-Troyan

Fadin-Lipatov-Martin-Melles, Ermolaev- Greco-Troyan
is

Essence of the method

In order to regulate IR divergences ntroduce IR cut-off μ for all virtual particles:

$$
\mathrm{k}_{\perp}>\mu
$$

Lipatov

DL contributions arrive from the integration region where
the cut-off works both in the longitudinal and in the transverse space

DL contributions come from the region where transverse momenta are widely different \longrightarrow one can factorize the phase space into a set of separable sub-regions, in each region some virtual particle has minimal k_{\perp} Let us call such a particle the softest one.

DL contributions of softest particles can be factorized and their transverse momentum plays the role of a new IR cut-off for integration over other virtual momenta

When $\mu \gg$ involved masses, one can drop the masses and be free of IR singularities.

The softest particle can be either boson (gluon) or fermion (quark)

Case A: the softest particle is gluon. It can be factorized in this way:

μ is the lowest limit for integration over k_{\perp} of the softest gluon only. It does not involve other momenta

$$
\int_{\mu} d k_{\perp} F\left(k_{\perp}, s, t\right)
$$

μ Is replaced by k_{\perp} In the blobs with factorized gluons

Case B. The softest particle is a quark. It can also be factorized:

DL contributions arrive from the region

$$
-\mathrm{t}<\mathrm{k}_{\perp}^{2}<S
$$

Case B is absent when s~-t Regge kiinematics

hard kinematics but contributes to

Combining cases A and B and adding Born contributions leads to IREE

Simplest application: Asymptotics of form factors of electron and quark

Electromagnetic fermion vertex:

Consider the vertex in the kinematics: $\left|q^{2}\right| \gg p^{2}{ }_{1}=p^{2}{ }_{2}=m^{2}$

Composing IREE for the form factors.
Step 1: introduce μ
Step 2: factorize the softest photon or gluon,
Step 3: add the initial, "Born" term

IREE for form factor f in the integral form

$$
\begin{aligned}
& f\left(q^{2} / \mu^{2}\right)= f_{\text {Born }}-\frac{a}{2 \pi} \int_{\mu^{2}}^{q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \ln \left(\frac{q^{2}}{k_{\perp}^{2}}\right) f\left(q^{2} / k_{\perp}^{2}\right) \\
& \text { Result of integrating over longitudinal } \mathbf{k}
\end{aligned}
$$

solution

$$
f=f_{\text {Borm }} \exp \left(-\frac{a}{4 \pi} \ln ^{2}\left(q^{2} / \mu^{2}\right)\right)
$$

For form factor $\mathrm{f}\left(\mathrm{q}^{2}\right)$, the Born term $=1$
For form factor $\mathbf{g}\left(\mathbf{q}^{2}\right)$, the "Born " term $=-\frac{m^{2}}{q^{2}} \frac{a}{\pi} \ln \left(\frac{q^{2}}{m^{2}}\right)$,
where

$$
a_{Q E D}=\alpha, \quad a_{Q C D}=\alpha_{s} C_{F}
$$

Solution

$$
\Gamma_{\mu}=\left[\gamma_{\mu}+\frac{\sigma_{\mu \nu} q_{\nu}}{m} \frac{\partial}{\partial\left(q^{2} / m^{2}\right)}\right] \exp \left(-\frac{a}{4 \pi} \frac{q^{2}}{m^{2}}\right)
$$

where is assumed

Inelastic form factor of a quark $e^{+} e^{-} \rightarrow q \bar{q}+\mathrm{n}$ gluons

IREE for the form factor: look for the softest boson
Step 1: factorize the emitted gluon in the region $\quad k_{\perp} \ll k_{\perp}^{\prime}$
Step 2: factorize the softest virtual gluon in the region $k_{\perp} \gg k_{\perp}^{\prime}$

Solution

$$
\begin{aligned}
F & =\exp \left(-\frac{\alpha_{s}}{4 \pi}\left[C_{F} \ln ^{2}\left(q^{2} / m^{2}\right)+(N / 2) \ln ^{2}\left(k_{\perp}^{2} / m^{2}\right)\right]\right) \quad \begin{array}{l}
\text { Ermolaev- } \\
\text { Fadin- } \\
\text { Lipatov }
\end{array} \\
G & =-2 \frac{\partial F}{\partial\left(q^{2} / m^{2}\right)}
\end{aligned}
$$

Expressions for emission of \mathbf{n} gluons are obtained similarly

Exponentiation of electroweak double logarithms

Mass scale is more involved: μ, M_{Z}, M_{w}
Assumption: $M_{z}=M_{w}=M$ and M can be treated as the second cut-off

Solution
Fadin-Lipatov-Martin-Melles

Deep Inelastic Scattering

$$
W_{\mu \nu}=W_{\mu \nu}^{\text {unpolarized }}(p, q)+W_{\mu \nu}^{\text {spin }}(p, q)
$$

The spin-independent part of $\mathbf{W}_{\mu \nu}$ is parameterized by two structure functions:
$W_{\mu \nu}^{u n p o l}=\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(p_{\mu}-q_{\mu} \frac{p q}{q^{2}}\right)\left(p_{\nu}-q_{\nu} \frac{p q}{q^{2}}\right) \frac{F_{2}\left(x, Q^{2}\right)}{p q}$

Projection operators respect Lorentz and gauge symmetries

$$
q_{\mu} W_{\mu \nu}=q_{\nu} W_{\mu \nu}=0
$$

where \mathbf{p} is the hadron momentum, \mathbf{q} is the virtual photon momentum ($Q^{2}=-q^{2}>0$). Both of the functions depend on Q^{2} and $x=Q^{2} / 2 p q, \quad 0<x<1$.

$$
F_{2} \rightarrow 2 x F_{1} \text { when } x \rightarrow 0
$$

In the QCD framework, he spin-dependent part of $\mathbf{W}_{\mu \nu}$ is also parameterized by two structure functions:

where m, p and S are the hadron mass, momentum and spin; q is the virtual photon momentum ($Q^{2}=-q^{2}>0$). Again both functions depend on \mathbf{Q}^{2} and $\mathbf{x}=\mathbf{Q}^{2} / \mathbf{2 p q}, \mathbf{0}<\mathbf{x}<\mathbf{1}$. They measure asymmetries
g_{1} measures the longitudinal spin flip

$$
g_{1} \propto \sigma_{L \uparrow \uparrow}-\sigma_{L \uparrow \downarrow}
$$

$\mathrm{g}_{1}+\mathrm{g}_{2}$ measures the transverse spin flip

$$
g_{1}+g_{2} \propto \sigma_{T \uparrow \uparrow}-\sigma_{T \uparrow \downarrow}
$$

FACTORISATON: $W_{\mu \nu}$ is a convolution of the the partonic tensor and probabilities to find a polarized parton (quark or gluon) in the hadron :

DIS off quark and gluon can be studied with perturbative QCD, with calculating involved Feynman graphs.

Probabilities, $\Phi_{\text {quark }}$ and $\Phi_{\text {gluon }}$ involve non-perturbaive QCD. There is no a regular analytic way to calculate them. Usually they are defined from experimental data at large \mathbf{x} and small \mathbf{Q}^{2}, they are called the initial quark and gluon densities and are denoted $\delta \mathbf{q}$ and $\delta \mathbf{g}$.

So, the conventional form of the hadronic tensor is:

are calculated with methods of Pert QCD

The Standard Approach includes the Altarelli-Parisi alias DGLAP alias Q 2 - Evolution Equations and the Standard Fits for initial paron densities

Evolution Equations: Altarelli-Parisi, Gribov-Lipatov, Dokshitzer

In particular, \mathbf{g}_{1} :

DGLAP evolution equations

$$
\begin{array}{r}
\frac{d \Delta q}{d \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi} P_{q q} \otimes \Delta q+\frac{\alpha_{s}}{2 \pi} P_{q g} \otimes \Delta g \\
\frac{d \Delta g}{d \ln Q^{2}}=\frac{\alpha_{s}}{2 \pi} P_{g q} \otimes \Delta q+\frac{\alpha_{s}}{2 \pi} P_{g g} \otimes \Delta g \\
P_{q q}, P_{q g}, P_{g q}, P_{g g} \quad \text { are splitting functions }
\end{array}
$$

Mellin transform of the splitting functions = anomalous dimensions

The Standard Approach includes the DGLAP Evolution Equations and the Standard Fits for initial parton densities. One can say that SA combines Science and Art

SCIENCE

LO splitting

 functionsNLO splitting functions

Ahmed-Ross, Altarelli-Parisi, Sasaki,

Floratos, Ross, Sachradja, Gonzale- Arroyo, Lopes, Yandurain, Kounnas, Lacaze, Curci, Furmanski, Petronzio, Zijlstra, Mertig, van Neerven, Vogelsang

Coefficient functions $C^{(1)}{ }_{k}, C^{(2)}{ }_{k}$

Bardeen, Buras, Muta, Duke, Altarelli, Kodaira, Efremov, Anselmino, Leader, Zijlstra, van Neerven

In DGLAP, coefficient functions and anomalous dimensions are known with LO and NLO accuracy, often at integer $\boldsymbol{\omega}=\mathbf{n}$

ART

= the art of composing the fits for initial parton densities

Altarelli-Ball-Forte-Ridolfi, Blumlein- Botcher, Leader- SidorovStamenov, Hirai et al

There are different fits for initial parton densities. For example,

$$
\begin{aligned}
& \delta q=N x^{-\alpha}\left[(1-x)^{\beta}\left(1+\gamma x^{\delta}\right)\right] \\
& \delta q=N\left[\ln ^{\alpha}(1 / x)+\gamma x \ln ^{\beta}(1 / x)\right]
\end{aligned}
$$

Altarelli-Ball-Forte-Ridolfi,

Parameters $\quad N, \alpha, \beta, \gamma, \delta \quad$ should be fixed from experiment
This combination of Science and Art works well at large and small x, though strictly speaking, DGLAP is not supposed to work at the small- \mathbf{x} region:

For example, for the simplest case of the non-singlet $\mathbf{g}_{\mathbf{1}}$

Initial quark density

DGLAP accounts for $\ln \left(Q^{2}\right)$ to all orders in α_{s} and neglects

$$
\left(\alpha_{s} \ln ^{2}(1 / x)\right)^{k},\left(\alpha_{s} \ln (1 / x)\right)^{k} \text { with k>2 }
$$

However, these contributions become leading at small x and should be accounted for to all orders in the QCD coupling.

DGLAP cannot do total resummation of logs of \mathbf{x} because of the DGLAP-ordering - KEYSTONE of DGLAP

if the initial parton densities are not singular functions of \mathbf{x}

When the DGLAP -ordering is lifted and leading logarithms of x are taken into account, the asymptotics is different

The leading contributions for g_{1} at small x are double-logarithmic (DL). Sub-leading contributions are single-logarithmic (SL)

DL contributions
$\left(\alpha_{s} \ln ^{2}(1 / x)\right)^{k}$,
$\left(\alpha_{s} \ln (1 / x) \ln \left(Q^{2} / \mu^{2}\right)\right)^{k} \quad\left(\alpha_{s} \ln (1 / x)\right)^{k}$,
$k=1,2 . . \infty$

SL contributions

In DLA, asymptotics of g_{1} is

$$
g_{1}^{D L} \sim(1 / \mathrm{X})_{\text {intercept }}^{\Delta}\left(\mathrm{Q}^{2} / \mu^{2}\right)^{\Delta / 2} \quad \begin{gathered}
\text { Bartels- Ermolaev- } \\
\text { Manaenkov-Ryskin }
\end{gathered}
$$

whereas DGLAP predicts

$$
g_{1}^{D G L A P} \sim \exp \left[\ln (1 / \mathrm{x}) \ln \ln \left(\mathrm{Q}^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)\right]^{1 / 2}
$$

Obviously $g_{1}^{D L} \gg g_{1}^{D G L A P}$ when $\mathrm{x} \rightarrow 0$

Piece of terminology

Each structure function has both the non-singlet and singlet components: $\mathrm{g}_{1}=\mathrm{g}_{1}{ }^{\mathrm{NS}}+\mathrm{g}_{1}{ }^{\text {S }}$

Intercepts of g_{1} in Double-Logarithmic Approximation:

> non- singlet intercept
singlet intercept

$$
\Delta_{N S}=\left(8 \alpha_{\mathrm{s}} / 3 \pi\right)^{1 / 2}
$$

$$
\Delta_{S}=3.45\left(3 \alpha_{\mathrm{s}} / 2 \pi\right)^{1 / 2}
$$

The weakest point of this approach: the QCD coupling $\alpha_{\mathbf{s}}$ is fixed at an unknown scale.
On the contrary, DGLAP equations have always operated with running α_{s}

$$
\alpha_{s}=\alpha_{s}\left(Q^{2}\right) \curvearrowright \begin{gathered}
\text { DGLAP- } \\
\text { parameterization }
\end{gathered}
$$

Arguments in favor of the \mathbf{Q}^{2} - parameterization:

Amati-Bassetto-Ciafaloni-Marchesini

- Veneziano; Dokshitzer-Shirkov

$$
\alpha_{s}=\alpha_{s}\left(k_{\perp}^{2}\right)
$$

However, such a parameterization is
Ermolaev-Greco-Troyan good for large x only. At small x :

DIS structure functions obey the Bethe-Salpeter equation:

$$
\begin{aligned}
& \mathbf{w = 2 p q} \\
& \int d k_{\perp}^{2} d \beta d m^{2} \Phi\left(w, Q^{2}, \beta, k_{\perp}^{2}, m^{2}\right) \frac{1}{\beta m^{2}+k_{\perp}^{2}} \operatorname{Im}\left(\frac{\alpha_{s}\left(m^{2}\right)}{m^{2}+i \varepsilon}\right) \\
& \alpha_{s}\left(m^{2}\right)=\frac{\mathbf{m}^{2}>0}{b \ln \left(-m^{2} / \Lambda_{Q C D}^{2}\right)}=\frac{1}{b\left[\ln \left(m^{2} / \Lambda_{Q C D}^{2}\right)-i \pi\right]} \\
& 1>\beta>x+\frac{k_{\perp}^{2}(1-x)}{w-m^{2}}
\end{aligned}
$$

Integral over $\mathbf{m}^{\mathbf{2}}$ is interpreted as a dispersion relation:

DokshitzerShirkov

However this interpretation is valid for large x only, when

$$
\beta_{\min }=x+\frac{k_{\perp}^{2}(1-x)}{w-m^{2}} \approx x
$$

and cannot be used for small x

At $x \ll 1$ and with the leading logarithmic accuracy one can Integrate over m^{2} :

$$
\begin{aligned}
& \int_{0}^{\infty} d m^{2} \frac{1}{\beta m^{2}+k_{\perp}^{2}} \operatorname{Im}\left(\frac{\alpha_{s}\left(m^{2}\right)}{m^{2}}\right) \approx \frac{1}{k_{\perp}^{2}} \int_{0}^{k_{\perp}^{2} / \beta} d m^{2} \operatorname{Im}\left(\frac{\alpha_{s}\left(m^{2}\right)}{m^{2}}\right)= \\
& \frac{1}{k_{\perp}^{2}}\left[\frac{1}{b} \arctan \left(\frac{1}{\pi} \ln \left(\frac{k_{\perp}^{2}}{\beta \Lambda_{Q C D}^{2}}\right)\right)\right]
\end{aligned}
$$

plays the role of α_{s} when $\mathrm{x} \ll 1$

However, it is better to do the Mellin transform

Quark-quark scattering amplitude in the Born approximation

$$
M_{B}(s)=\alpha_{s}(s) \frac{s}{s-\mu^{2}+i \varepsilon}
$$

The minus sign for respecting the analyticity

The coupling participates in the Mellin transform

$$
M_{B}=\alpha_{s}(s) \frac{s}{s-\mu^{2}+i \varepsilon} \rightarrow \frac{A(\omega)}{\omega}
$$

where

$$
\alpha_{s}(s) \rightarrow A(\omega)=\frac{1}{b}\left[\frac{\eta}{\eta^{2}+\pi^{2}}-\int_{0}^{\infty} d \rho \frac{\exp (-\omega \rho)}{(\rho+\eta)^{2}+\pi^{2}}\right]
$$

with

$$
\eta=\ln \left(\mu^{2} / \Lambda_{Q C D}^{2}\right)
$$

It is valid when

$$
\mu^{2}>\Lambda_{Q C D}^{2}
$$

This restriction guarantees the applicability of Pert QCD

Expression for the non-singlet g_{1} at large Q^{2} : $\mathrm{Q}^{2} \gg 1 \mathrm{GeV}^{2}$

New coefficient function and anomalous dimension sum up leading logarithms to all orders in $\alpha_{\text {s }}$

Compare our non-singlet anomalous dimension to the LO DGLAP one:
expand C and H into series in $1 / \omega$

$$
H=\frac{A(\omega) C_{F}}{2 \pi}\left[\frac{1}{\omega}+\frac{1}{2}\right]+\ldots
$$

$$
\gamma_{N S}^{\mathrm{LO} \text { DGLAP }}=\frac{\alpha_{s}\left(Q^{2}\right) C_{F}}{2 \pi}\left[\frac{1}{n(n+1)}+\frac{3}{2}-S_{2}(n)\right] \approx \frac{\alpha_{s}\left(Q^{2}\right) C_{F}}{2 \pi}\left[\frac{1}{n}+\frac{1}{2}+O(n)\right]
$$

where

$$
S_{k}(n)=\sum_{j=1}^{n} \frac{1}{j^{k}}
$$

Compare our coefficient function and the NLO DGLAP one

$$
C=\frac{\omega}{\omega-H(\omega)}=1+\frac{A(\omega) C_{F}}{2 \pi}\left[\frac{1}{\omega^{2}}+\frac{1}{2 \omega}\right]+\ldots
$$

Expression for the singlet g_{1} at large Q^{2} :

$$
g_{1}^{S}=\frac{\left\langle e_{q}^{2}\right\rangle}{2} \int \frac{d \omega}{2 \pi i}\left(\frac{1}{x}\right)^{\omega}
$$

$Q^{2}>\mu^{2} ; \mu \approx 5 \mathrm{GeV}$

Small $-x$ symptotics of g_{1} : when $x \rightarrow 0$, the saddle-point method leads to

$$
g_{1}^{N S} \sim \frac{\mathrm{e}_{\mathrm{q}}^{2}}{2}(1 / x)^{\Delta_{N S}}\left(Q^{2} / \mu^{2}\right)^{\Delta_{N S} / 2} \delta q
$$

Nonsinglet intercept $\quad \Delta_{\mathrm{NS}}=0.42$

At large $\mathrm{x}, \mathrm{g}_{1}{ }^{\mathrm{NS}}$ and $\mathrm{g}_{1}{ }^{\mathrm{S}}$ are positive
$\delta q>0 \longrightarrow g_{1}^{N S}>0 \quad$ In the whole range of \mathbf{x} at any \mathbf{Q}^{2}

Asymptotics of the singlet g_{1} are more involved

$$
g_{1}^{S} \sim \frac{\left\langle\mathrm{e}_{\mathrm{q}}^{2}\right\rangle}{2} \mathrm{~S}\left(\Delta_{\mathrm{s}}\right)(1 / x)^{\Delta_{s}}\left(Q^{2} / \mu^{2}\right)^{\Delta_{s} / 2}
$$

With intercept $\quad \Delta_{\mathrm{S}}=0.86$
and

$$
\overbrace{1}^{S\left(L_{3}\right)=\alpha_{1}-0.064}
$$

Interplay between the quark and gluon densities can lead to different sign of g_{1} singlet at $x \ll 1$

Warning: asymptotic expressions $g_{1} \sim(1 / x)^{\Delta}$ are reliable at $x<10-5$

At large $\mathbf{x}, \mathrm{g}_{1}$ singlet is positive. When $\mathbf{x - - >} \mathbf{0}$, the sign of asymtpotics of the singlet g_{1} depends on the ratio between the initial parton densities

Values of the intercepts perfectly agree with results of several groups who fitted experimental data.
non-singlet intercept

Soffer-Teryaev, Kataev-SidorovParente, Kotikov-Lipatov-Parente-Peshekhonov-Krivokhijine-Zotov,

Anatomy of the singlet intercept
A. Graphs with gluons only:

```
singlet
intercept
```

Comparison of our results to DGLAP at finite \mathbf{x}-no asymptotic formulae used
Comparison depends on the assumed shape of initial parton densities.
The simplest option: use the bare quark input

Numerical comparison shows that the impact of the total resummation of logs of \mathbf{x} becomes quite sizable at $\mathbf{x}=\mathbf{0 . 0 5}$ approx.

Hence, DGLAP should have Failed at $\mathbf{x}<0.05$.
However, it does not take place.

In order to understand what could be the reason for success of DGLAP at small \mathbf{x}, let us consider in more detail standard fits for initial parton densities.

$$
\delta q(x)=N \mathrm{x}^{-\alpha}\left[\left(1+\gamma \mathrm{x}^{\delta}\right)(1-x)^{\beta}\right]
$$

Altarelli-Ball-Forte-

 Ridolfi
are fixed from fitting experimental data at large \mathbf{x}

In the Mellin space this fit is

the small-x DGLAP asymptotics of g_{1} is (inessential factors dropped)

Comparison it to our asymptotics

$$
\mathrm{g}_{1} \sim(1 / x)^{\Delta_{N S}} \longrightarrow \quad \text { calculations }
$$

shows that the singular factor in the DGLAP fit mimics the total resummation of $\ln (1 / x)$. However, the value $\alpha=0.58$ sizably differs from our non-singlet intercept $=0.4$

Although our and DGLAP asymptotics lead to the x - behavior of Regge type, they predict different intercepts for the x - dependence and different \mathbf{Q}^{2}-dependence:
our calculations

$$
\mathrm{g}_{1} \sim(1 / x)^{\Delta}\left(Q^{2} / \mu^{2}\right)^{\Delta / 2}
$$

whereas DGLAP predicts the steeper x-behavior and the flatter Q^{2}-behavior:

x-asymptotics was checked with extrapolating available exp data to $x \rightarrow 0$. It agrees with our values of Δ Contradicts DGLAP
our and the DGLAP Q^{2}-asymptotics have not been checked yet.

Common opinion: the total resummation is not relevant at available \mathbf{x} Actually: the resummation has always been accounted for through the standard fits, however without realizing it

Common opinion: fits for $\delta \mathbf{q}$ are singular but defined and large \mathbf{x}, then convoluting them with coefficient functions weakens the singularity

$C(x, y) \otimes \delta q(y)=\Delta q(x)$

x-evolved

Obviously, it is not true:
They both are singular equally

initial

Structure of DGLAP fit once again:

$$
\delta q(x)=N \mathrm{x}^{-\alpha}\left[\left(1+\gamma \mathrm{x}^{\delta}\right)(1-x)^{\beta}\right]
$$

Can be dropped when $\ln (x)$ are resummed

Therefore at $\mathrm{x} \ll 1$

$$
\delta q(x) \approx \mathrm{N}(1+\mathrm{ax})
$$ dropped

Numerical comparison of DGLAP with our approach at small but finite x , using the same DGLAP fit for initial quark density.

Comparison between DGLAP and our approach at small \mathbf{x}

DGLAP

coeff functions and anom dimensions are calculated with two-loop accuracy

To ensure the Regge behavior, singular in x terms in initial partonic densities are used

Equivalent to inserting a phenomenological asymptotic factor into expressions for g_{1} but

our approach

coeff functions and anom dimensions sum up DL and SL terms to all orders

Regge behavior is achieved automatically, even when the initial densities are regular in \mathbf{x}

Asymptotics of g_{1} are never used in expressions for g_{1} at finite x
warning: using asymptotic formulae for g_{1} is unreliable at $x>10^{-5}$

Comparison between DGLAP and our approach at any \mathbf{x}

Good at large x because includes exact two-loop calculations but bad at small x as lacks the total resummaion of $\ln (x)$
our approach

Good at small x, includes the total resummaion of $\ln (x)$ but bad at large x because neglects some contributions essential in this region

WAY OUT - synthesis of our approach and DGLAP

1. Expand our formulae for coefficient functions and anomalous dimensions into series in the QCD coupling
2. Replace the first- and second-loop terms of the expansion by corresponding DGLAP -expressions

Our expressions

$$
H(\omega)=(1 / 2)\left[\omega-\left(\omega^{2}-B(\omega)\right)\right]^{1 / 2} \quad C(\omega)=\omega /(\omega-H(\omega))
$$

anomalous dimension

First tems of their expansions into the perturbation series

$$
H_{1}=\frac{A(\omega) C_{F}}{2 \pi}\left[\frac{1}{\omega}+\frac{1}{2}\right] \quad C_{1}=\frac{A(\omega) C_{F}}{2 \pi}\left[\frac{1}{\omega^{2}}+\frac{1}{2 \omega}\right]
$$

New, "synthetic" formulae:

$$
h=H-H_{1}+H_{L O D G L A P} \quad c=C-C_{1}+C_{L O D G L A P}
$$

New, "synthetic" formulae accumulate all advantages of the both approaches and should equally be good at large and small x.

New fits should not involve singular factors

Taken from wwwcompass.cern.ch

COMPASS is a high-energy physics experiment at the Super Proton Synchrotron (SPS) at CERN in Geneva, Switzerland. The purpose of this experiment is the study of hadron structure and hadron spectroscopy with high intensity muon and hadron beams.
On February 1997 the experiment was approved conditionally by CERN and the final Memorandum of Understanding was signed in September 1998. The spectrometer was installed in 1999-2000 and was commissioned during a technical run in 2001. Data taking started in summer 2002 and continued until fall 2004. After one year shutdown in 2005, COMPASS will resume data taking in 2006.
Nearly 240 physicists from 11 countries and 28 institutions work in COMPASS

COMPASS
COmmon Muon Proton Apparatus for Structure and Spectroscopy

Artistic view of the 60 m long COMPASS two-stage spectrometer. The two dipole magnets are indicated in red

COMPASS operates with small $Q^{2}\left(Q^{2}<0^{-1} \mathrm{GeV}^{2}\right)$ and small $x \sim 10^{-3}$

In order to generalize our results to the region of small \mathbf{Q}^{2}, one should remember that $\ln \left(Q^{2} / \mu^{2}\right)$ is the result of the integration
obained for large \mathbf{Q}^{2} with logarithmic accuracy.

$$
\int_{\mu^{2}}^{Q^{2}} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$ For arbitrary \mathbf{Q}^{2} one can use the prescription:

$$
\mathrm{Q}^{2} \rightarrow \mathrm{Q}^{2}+\mu^{2} \quad \mathrm{x} \rightarrow \bar{x}=\left(\mathrm{Q}^{2}+\mu^{2}\right) / 2 \mathrm{pq}=x+z
$$

> Infrared cut-off

Obviously, \mathbf{g}_{1} obeys the Bete-Salpeter equation:

$$
g_{1}=\int \frac{d^{4} k k_{\perp}^{2}}{\left(k^{2}+\mu^{2}\right)^{2}} \delta\left(k^{2}+2 q k-\left(Q^{2}+\mu^{2}\right)\right) L\left(2 p k, k^{2}, \mu^{2}\right)
$$

Using the Sudakov parameterization

$$
\begin{aligned}
& k=\alpha q+(\beta+x \alpha) p+k_{\perp} \\
& \approx \alpha q+\beta p+k_{\perp}
\end{aligned}
$$

leads 0 the following integral representation for g_{1} at $\mathrm{x} \ll 1$

$$
g_{1}=\int_{0}^{w} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}+\mu^{2}} L\left(Q^{2}+\mu^{2}, w, k_{\perp}^{2}, \mu^{2}\right)
$$

This integral can approximately be calculated at $Q^{2} \gg \mu^{2}$ and at $Q^{2} \ll \mu^{2}$. The both cases can approximately be written through the shift $\quad Q^{2} \longrightarrow Q^{2}+\mu^{2}$

It leads to new expressions: non-singlet g_{1} at small Q^{2}

Singlet g_{1} at small \mathbf{Q}^{2}

$$
z=\frac{\mu^{2}}{2 p q}
$$

$$
\begin{aligned}
& g_{1}^{S}=\frac{\left.<e_{q}^{2}\right\rangle}{2} \int \frac{d \omega}{2 \pi i}\left(\frac{1}{z+x}\right)^{\omega}\left[C_{q} \delta q+C_{g} \delta g\right] \\
& C_{g}=C_{g}^{(+)}\left(\frac{\mu^{2}+Q^{2}}{\mu^{2}}\right)^{\Omega^{(+)}}+C_{g}^{(-)}\left(\frac{\mu^{2}+Q^{2}}{\mu^{2}}\right)^{\Omega^{(-)}} \\
& C_{q}=C_{q}^{(+)}\left(\frac{\mu^{2}+Q^{2}}{\mu^{2}}\right)^{\Omega^{(+)}}+C_{q}^{(-)}\left(\frac{\mu^{2}+Q^{2}}{\mu^{2}}\right)^{\Omega^{(-)}}
\end{aligned}
$$

when $Q^{2} \ll \mu^{2}$ both \mathbf{x} - and \mathbf{Q}^{2} - dependences are flat, even for $\mathbf{x} \ll 1$.

Location of the line is determined by the \mathbf{z} dependence

Approximating

$$
g_{1}(z)=\left(\frac{e_{q}^{2}}{2}\right)_{-i \infty}^{i \infty} \frac{d \omega}{2 \pi i}\left(\frac{1}{z}\right)^{\omega}\left[C_{q}(\omega) \delta q+C_{g}(\omega) \delta g\right]
$$

$\delta q \approx N_{q}, \delta q \approx N_{q}$,
perform numerical calculations of G_{1}
$g_{1}=\left(e_{q}^{2} / 2\right) N_{q} G_{1}$,

Position of the turning point is sensitive to $\mathbf{N}_{\mathrm{g}} / \mathbf{N}_{\mathrm{q}}$, so the experimental detection of it will allow to estimate $\mathbf{N g} / \mathbf{N q}$

Power Corrections to non-singlet g_{1}

Standard way of obtaining PC from experimental data at small x :

Leader-Stamenov- Sidorov
Compare experimental data to predictions of the Standard Approach and assign the discrepancy to the impact of PC

$$
g_{1}^{L T}=g_{1}^{D G L A P}
$$

Counter-arguments:

1. DGLAP, the main ingredient of SA, is unreliable at small x, so comparing experiment to it is not productive
2. SA cannot explain why PC appear at $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$ only and predict what happens at smaller \mathbf{Q}^{2}

Our approach :

$$
\begin{aligned}
& g_{1}^{N S}=\frac{e_{q}^{2}}{2} \int \frac{d \omega}{2 \pi i}\left(\frac{\mathrm{w}}{\mu^{2}+Q^{2}}\right)^{\omega} \\
& \mathrm{C}(\omega) \delta \mathrm{q}(\omega)\left(\frac{\mu^{2}+Q^{2}}{\mu^{2}}\right)^{H(\omega)}
\end{aligned}
$$

where $\mathbf{w}=\mathbf{2 p q}$ and \mathbf{Q}^{2} can be large or small, $\mu=\mathbf{1 G e V}$

As $\mu=1 \mathrm{GeV}$, at $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$ expansion into series is

$$
\begin{aligned}
& g_{1}^{N S}= \\
& \frac{e_{q}^{2}}{2} \int \frac{d \omega}{2 \pi i}\left(\frac{\mathrm{w}}{Q^{2}}\right)^{\omega} \mathrm{C}(\omega) \delta \mathrm{q}(\omega)\left(\frac{\mu^{2}}{Q^{2}}\right)^{H(\omega)} \\
& \left.1+\sum_{k=1} T_{k}(\omega)\left(\frac{\mu^{2}}{Q^{2}}\right)^{k}\right] \\
& \text { Power corrections }
\end{aligned}
$$

When $\mathbf{Q}^{2}<1 \mathrm{GeV}^{2}$, PC are different:

These power corrections have perturbative origin and should be accounted in the first place. Only after that one can estimate a genuine impact of higher twist contributions

Conclusion

Infrared Evolution Equations Approach is a simple and efficient instrument for performing total resummations of Double- Log and a certain part of Single- Log contributions to processes in QCD, QED and electroweak reactions in the hard and Regge kinematics

Being applied to the Polarized DIS, this approach can be regarded as an alternative to the Standard Approach

Standard Approach

DGLAP was originally developed for operating at the region where both x and Q^{2} are large. Basic ingredients of the DIS structure functions - coefficient functions and splitting functions (anomalous dimensions) are calculated in DGLAP in the first and second loops. By construction, DGLAP describes the $Q^{2}-e v o l u t i o n ~ b u t ~ c a n n o t ~ d e s c r i b e ~ t h e ~ x-e v o l u t i o n . ~ A c c o u n t i n g ~ f o r ~ t h e ~ x-~$ evolution is especially important in the small-x region.
In order to extend DGLAP to the region of small \mathbf{x} and large \mathbf{Q}^{2}, it have been complemented with rather complicated expressions for the initial parton densities $\delta \mathbf{q}$ and $\delta \mathbf{g}$ found from fitting experimental data.

DGLAP + Standard fits form Standard Approach (SA). SA describes DIS at large \mathbf{Q}^{2} and arbitrary \mathbf{x}.

We have obtained the model-independent description of g_{1} combining total resummation of leading logarithmic contributions and DGLAP expressions. Represent g_{1} at arbitrary \mathbf{x} and \mathbf{Q}^{2}.

DGLAP agrees with experimental dataonly when special expressions for initial parton densities are used. They include singular factors, though DGLAP offers no theoretical explanation of the origin of the factors

Actually, the singular factors mimic total resummation of leading logarithms When the resummatiion is accounted for, the expressions for initial parton densities can be simplified down to constants

The region of small Q^{2} is also beyond the reach of $S A$. We predict that g_{1} at small Q^{2} is almost independent of x, even at $x \ll 1$. Instead, it depends on 2pq only. At a certain relation between the initial quark and gluon densities, g_{1} can be pretty close to zero in the range of $2 p q$ investigated now experimentally by COMPASS.

Besides genuine PC from higher twists, there are perturbative PC. They should be accounted in the first place and only after that the impact of higher twists can be estimated

