The three-loop calculation of DIS and its LHC applications

Andreas Vogt University of Liverpool

Collaborations with Sven Moch, Jos Vermaseren and Gavin Salam

Higgs boson production at the LHC (I)

Error guess/estimate: apparent convergence, variation of scale μ Next-to-leading order (NLO) insufficient for reliable predictions

Example: inclusive deep-inelastic scattering (DIS)

Kinematic variables

$$Q^2 = -q^2$$

$$x = Q^2/(2P \cdot q)$$

Lowest order :
$$x = \xi$$

Example: inclusive deep-inelastic scattering (DIS)

Kinematic variables

$$Q^2 = -q^2$$

$$x = Q^2/(2P \cdot q)$$

Lowest order : $x = \xi$

Structure function F_2 [up to $\mathcal{O}(1/Q^2)$]

$$x^{-1}F_2^{\ p}(x,Q^2) \ = \ \sum_i \int_x^1 rac{d\xi}{\xi} \ c_{2,i}igg(rac{x}{\xi},lpha_{
m s}(\mu^2),rac{\mu^2}{Q^2}igg) \ f_i^{\ p}(\xi,\mu^2)$$

Coefficient functions: renormalization/factorization scale $\mu = \mathcal{O}(Q)$

Parton distributions f_i : evolution equations

$$\frac{d}{d\ln\mu^2} f_i(\xi,\mu^2) = \sum_k \left[\frac{P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)}{\xi} \right] (\xi)$$

Initial conditions incalculable in pert. QCD. Lattice: low moments

 \Rightarrow predictions: fit-analyses of reference processes, universality

Parton distributions f_i : evolution equations

$$\frac{d}{d\ln\mu^2} f_i(\xi,\mu^2) = \sum_k \left[\frac{P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)}{\xi} \right] (\xi)$$

Initial conditions incalculable in pert. QCD. Lattice: low moments \Rightarrow predictions: fit-analyses of reference processes, universality

Splitting functions P, coefficient functions c_a

$$P = \alpha_{s} P^{(0)} + \alpha_{s}^{2} P^{(1)} + \alpha_{s}^{3} P^{(2)} + \dots$$
$$c_{a} = \alpha_{s}^{n_{a}} \left[c_{a}^{(0)} + \alpha_{s} c_{a}^{(1)} + \alpha_{s}^{2} c_{a}^{(2)} + \dots \right]$$

NLO: standard, but no serious error estimate, ...

Next-to-next-to-leading order (NNLO): $P^{(2)}, c_a^{(2)}$

Parton evolution from HERA to LHC

Kinematics: partons with momentum fractions $\xi_{-} < \xi < 1$ contribute

HERA \rightarrow LHC: Q^2 evolution across up to three orders of magnitude

Moch, Vermaseren, A.V. (2001-05)

Optical theorem: $\gamma^* f$ total cross section \leftrightarrow forward amplitude

Dispersion relation in x : coefficient of $(2p \cdot q)^N \leftrightarrow N$ -th moment

$$A^N = \int_0^1 dx \, x^{N-1} A(x)$$

Moch, Vermaseren, A.V. (2001-05)

Optical theorem: $\gamma^* f$ total cross section \leftrightarrow forward amplitude

Dispersion relation in x : coefficient of $(2p \cdot q)^N \leftrightarrow N$ -th moment

$$A^N = \int_0^1 dx \, x^{N-1} A(x)$$

UV and mass singularities : dimensional regularization, $D = 4 - 2\epsilon$ $1/\epsilon$ poles : splitting functions, ϵ^0 part : coefficient functions

 $P_{
m gi}$: DIS with scalar $\phi\,$ coupling to $\,G^a_{\mu
u}G^{\mu
u}_a$ ($\leftrightarrow\,$ Higgs for large m_t)

	tree	1-loop	2-loop	3-loop
${f q}\gamma$	1	3	25	359
${f g}\gamma$		2	17	345
h $oldsymbol{\gamma}$			2	56
qW	1	3	32	589
${f q}\phi$		1	23	696
$g\phi$	1	8	218	6378
h ϕ		1	33	1184
sum	3	18	350	9607

A benign and an evil 3-loop topology

 $P_{
m gi}$: DIS with scalar $\phi\,$ coupling to $\,G^a_{\mu
u}G^{\mu
u}_a$ ($\leftrightarrow\,$ Higgs for large m_t)

	tree	1-loop	2-loop	3-loop
${f q}\gamma$	1	3	25	359
${f g}\gamma$		2	17	345
h $oldsymbol{\gamma}$			2	56
qW	1	3	32	589
${\sf q}\phi$		1	23	696
${f g}\phi$	1	8	218	6378
h ϕ		1	33	1184
sum	3	18	350	9607

A benign and an evil 3-loop topology

Highly optimised symbolic treatment: FORM

Vermaseren

- > 10 person years, several CPU years, update to FORM 3.1
- $\gtrsim 10^5$ tabulated symbolic integrals (> 3 GB)

Treatment of the forward-Compton integrals

Combine identities: integration by parts, scaling, Passarino-Veltman \Rightarrow Difference equations for I(N) [recall: coefficient of $(2p \cdot q)^N$]

$$a_0(N)I(N) - \ldots - a_n(N)I(N-n) = I_0(N)$$

Simple example [red line: flow of massless parton momentum p]

$$-\frac{1}{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} + \frac{N+3+3\epsilon}{N+2} \frac{2p \cdot q}{q^{2}} - \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} = \frac{2}{N+2} - \underbrace{1}_{1} \underbrace{1}_$$

Successive reduction to simpler (less 'red') integrals

Treatment of the forward-Compton integrals

Combine identities: integration by parts, scaling, Passarino-Veltman \Rightarrow Difference equations for I(N) [recall: coefficient of $(2p \cdot q)^N$]

$$a_0(N)I(N) - \ldots - a_n(N)I(N-n) = I_0(N)$$

Simple example [red line: flow of massless parton momentum p]

$$-\frac{1}{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} + \frac{N+3+3\epsilon}{N+2} \frac{2p \cdot q}{q^{2}} - \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} \underbrace{1}_{1} = \frac{2}{N+2} - \underbrace{1}_{1} \underbrace{1}_$$

Successive reduction to simpler (less 'red') integrals

Essential: non-symbolic case for low N done before via Mincer Larin et al. (94,97); Retey, Vermaseren (00) Check of new code and results at all stages: I(N=2,3,4,...) = ?

The NNLO gluon-gluon splitting function

 $P_{\rm gg}^{(2)}(x) =$

 $16C_AC_Fn_f\left(x^2\left[\frac{4}{9}H_2+3H_{1,0}-\frac{97}{12}H_1+\frac{8}{2}H_{-2,0}-\frac{2}{2}H_0\zeta_2+\frac{103}{27}H_0-\frac{16}{2}\zeta_2+2H_3\right]$ $-6H_{-1,0} + 2H_{2,0} + \frac{127}{18}H_{0,0} - \frac{511}{12} + p_{gg}(x) \left[2\zeta_3 - \frac{55}{24}\right] + \frac{4}{3}(\frac{1}{x} - x^2) \left[\frac{17}{24}H_{1,0} - \frac{43}{18}H_0\right]$ $-\frac{521}{144}H_1 - \frac{6923}{432} - \frac{1}{2}H_{2,1} + 2H_1\zeta_2 + H_0\zeta_2 - 2H_{1,0,0} + \frac{1}{12}H_{1,1} - H_{1,1,0} - H_{1,1,1} \Big] - \frac{175}{12}H_2$ $+6H_{-1,0}+8H_0\zeta_3-6H_{-2,0}-\frac{53}{6}H_0\zeta_2-\frac{49}{2}H_0+\frac{185}{4}\zeta_2+\frac{511}{12}-\frac{1}{2}H_{2,0}-3H_{1,0}-4H_{0,0,0,0}$ $-\frac{67}{12}H_{0,0}+\frac{43}{2}\zeta_{3}-H_{2,1}+\frac{97}{12}H_{1}-4\zeta_{2}{}^{2}-\frac{9}{2}H_{3}-8H_{-3,0}+\frac{33}{2}H_{0,0,0}+\frac{4}{3}(\frac{1}{x}+x^{2})\Big[\frac{1}{2}H_{2}-H_{2,0}-\frac{1}{2}H_{2}+\frac{1}{$ $+\frac{11}{2}H_{-1,0}+H_{-2,0}+\frac{19}{6}\zeta_{2}+2\zeta_{3}-H_{-1}\zeta_{2}-4H_{-1,-1,0}-\frac{1}{2}H_{-1,0,0}-H_{-1,2}\Big]+(1-x)\Big[9H_{1}\zeta_{2}$ $+12H_{0,0,0,0}-\frac{293}{100}+\frac{61}{6}H_0\zeta_2-\frac{7}{2}H_{1,0}-\frac{857}{26}H_1-9H_0\zeta_3+16H_{-2,-1,0}-4H_{-2,0,0}+8H_{-2}\zeta_2$ $-\frac{13}{2}H_{1,0,0}+\frac{3}{4}H_{1,1}-H_{1,1,0}-H_{1,1,1}\Big]+(1+x)\Big[\frac{1}{6}H_{2,0}-\frac{95}{2}H_{-1,0}-\frac{149}{26}H_2+\frac{3451}{100}H_0$ $-7H_{-2,0} + \frac{302}{9}H_{0,0} + \frac{19}{6}H_3 - \frac{991}{36}\zeta_2 - \frac{163}{6}\zeta_3 - \frac{35}{3}H_{0,0,0} + \frac{17}{6}H_{2,1} - \frac{43}{10}\zeta_2^2 + 13H_{-1}\zeta_2$ $+18H_{-1-10} - H_{31} - 6H_4 - 4H_{-12} + 6H_{00}\zeta_2 + 8H_2\zeta_2 - 7H_{200} - 2H_{210} - 2H_{211} - 4H_{30}$ $-9H_{-1,0,0}\Big] -\frac{241}{208}\delta(1-x)\Big) + 16C_A n_f^2 \Big(\frac{19}{54}H_0 - \frac{1}{24}xH_0 - \frac{1}{27}p_{gg}(x) + \frac{13}{54}(\frac{1}{x}-x^2)\Big[\frac{5}{2}-H_1\Big]$ $+(1-x)\left[\frac{11}{72}H_{1}-\frac{71}{216}\right]+\frac{2}{9}(1+x)\left[\zeta_{2}+\frac{13}{18}xH_{0}-\frac{1}{2}H_{0,0}-H_{2}\right]+\frac{29}{288}\delta(1-x)\right)$ $+16C_{A}^{2}n_{f}\left(x^{2}\left[\zeta_{3}+\frac{11}{9}\zeta_{2}+\frac{11}{9}H_{0,0}-\frac{2}{3}H_{3}+\frac{2}{3}H_{0}\zeta_{2}+\frac{1639}{108}H_{0}-2H_{-2,0}\right]+\frac{1}{3}p_{gg}(x)\left[\frac{10}{3}\zeta_{2}+\frac{10}{9}H_{0,0}-\frac{2}{3}H_{0}+\frac$ $-\frac{209}{26} - 8\zeta_3 - 2H_{-2,0} - \frac{1}{2}H_0 - \frac{10}{2}H_{0,0} - \frac{20}{2}H_{1,0} - H_{1,0,0} - \frac{20}{2}H_2 - H_3 \Big] + \frac{10}{9}p_{gg}(-x)\Big[\zeta_2$ $+2H_{-1,0}+\frac{3}{10}H_0\zeta_2-H_{0,0}$ + $\frac{1}{2}(\frac{1}{x}-x^2)[H_3-H_0\zeta_2-\frac{13}{2}H_2+\frac{5443}{108}-3H_1\zeta_2+\frac{205}{26}H_1$ $-\frac{13}{3}H_{1,0}+H_{1,0,0}\Big]+(\frac{1}{r}+x^2)\Big[\frac{151}{54}H_0-\frac{8}{3}\zeta_2+\frac{1}{3}H_{-1}\zeta_2-\zeta_3+2H_{-1,-1,0}-\frac{2}{3}H_{-1,0,0}$ $-\frac{37}{9}H_{-1,0} + \frac{2}{3}H_{-1,2} \Big] + (1-x) \Big[\frac{5}{6}H_{-2,0} + H_{-3,0} + 2H_{0,0,0} - \frac{269}{36}\zeta_2 - \frac{4097}{216} - 3H_{-2}\zeta_2 \Big]$ $-6H_{-2,-1,0} + 3H_{-2,0,0} - \frac{7}{2}H_{1}\zeta_{2} + \frac{677}{72}H_{1} + H_{1,0} + \frac{7}{4}H_{1,0,0} \Big] + (1+x)\Big[\frac{193}{2\epsilon}H_{2} - \frac{11}{2}H_{-1}\zeta_{2}\Big]$ $+\frac{39}{20}{\zeta_2}^2-\frac{7}{12}H_3-\frac{53}{9}H_{0,0}+\frac{7}{12}H_0{\zeta_2}-\frac{5}{2}H_{0,0}{\zeta_2}+5{\zeta_3}-7H_{-1,-1,0}+\frac{77}{6}H_{-1,0}+\frac{9}{2}H_{-1,0,0}$ $+2H_{-1,2}-3H_2\zeta_2-\frac{2}{2}H_{2,0}+\frac{3}{2}H_{2,0,0}+\frac{3}{2}H_4\Big]+\frac{1}{9}\zeta_2+7H_{-2,0}+2H_2+\frac{458}{27}H_0+H_{0,0}\zeta_2$ $+\frac{3}{2}{\zeta_2}^2+4H_{-3,0}-x\Big[\frac{131}{12}H_{0,0}-\frac{8}{3}H_0\zeta_2+\frac{7}{2}H_3-H_{0,0,0,0}+\frac{7}{6}H_{0,0,0}+\frac{1943}{216}H_0+6H_0\zeta_3\Big]$ $-\delta(1-x)\left[\frac{233}{288}+\frac{1}{6}\zeta_{2}+\frac{1}{12}\zeta_{2}^{2}+\frac{5}{2}\zeta_{3}\right]+16C_{A}^{3}\left(x^{2}\left[33H_{-2,0}+33H_{0}\zeta_{2}-\frac{1249}{18}H_{0,0}\right]\right)$ $-44H_{0,0,0} - \frac{110}{2}H_3 - \frac{44}{2}H_{2,0} + \frac{85}{6}\zeta_2 + \frac{6409}{108}H_0 + p_{gg}(x) \left[\frac{245}{24} - \frac{67}{9}\zeta_2 - \frac{3}{10}\zeta_2^2 + \frac{11}{24}\zeta_2^2\right]$

 $-4H_{-3,0}+6H_{-2}\zeta_{2}+4H_{-2,-1,0}+\frac{11}{2}H_{-2,0}-4H_{-2,0,0}-4H_{-2,2}+\frac{1}{6}H_{0}-7H_{0}\zeta_{3}+\frac{67}{9}H_{0,0}$ $-8H_{0,0}\zeta_2 + 4H_{0,0,0,0} - 6H_1\zeta_3 - 4H_{1,-2,0} + 10H_{2,0,0} - 6H_{1,0}\zeta_2 + 8H_{1,0,0,0} + 8H_{1,1,0,0} + 8H_{4,0,0,0} - 6H_{1,0,0,0} + 8H_{4,0,0,0,0} - 6H_{1,0,0,0} - 6H_{1,0,0,0,0} - 6H_{1,0,0,0} - 6H_{1,0,$ $+\frac{134}{9}H_{1,0}+\frac{11}{6}H_{1,0,0}+8H_{1,2,0}+8H_{1,3}+\frac{134}{9}H_2-4H_2\zeta_2+8H_{3,1}+8H_{2,2}+\frac{11}{6}H_3+10H_{3,0}$ $+8H_{2,1,0}\Big] + p_{gg}(-x)\Big[\frac{11}{2}\zeta_{2}^{2} - \frac{11}{6}H_{0}\zeta_{2} - 4H_{-3,0} + 16H_{-2}\zeta_{2} - 12H_{-2,2} - \frac{134}{9}H_{-1,0} + 2H_{2}\zeta_{2}$ $+8H_{-2-10} + 12H_{-1}\zeta_3 - 18H_{-200} + 8H_{-1-20} - 16H_{-1-1}\zeta_2 + 24H_{-1-100} + 16H_{-1-12}$ $-\frac{67}{9}\zeta_{2}+\frac{67}{9}H_{0,0}+8H_{4}\Big]+\Big(\frac{1}{x}-x^{2}\Big)\Big[\frac{16619}{162}+\frac{22}{3}H_{2,0}-\frac{55}{2}\zeta_{3}-\frac{11}{2}H_{0}\zeta_{2}-\frac{67}{9}H_{2}-\frac{67}{9}H_{1,0}\Big]$ $-\frac{413}{108}H_1 - \frac{11}{2}H_1\zeta_2 + \frac{33}{2}H_{1,0,0}\Big] + 11(\frac{1}{r} + x^2)\Big[\frac{71}{54}H_0 - \frac{1}{6}H_3 - \frac{389}{198}\zeta_2 - \frac{2}{3}H_{-2,0} - \frac{1}{2}H_{-1}\zeta_2 + \frac{1}{$ $+H_{-1,-1,0} - \frac{523}{198}H_{-1,0} + \frac{8}{3}H_{-1,0,0} + H_{-1,2} + (1-x) \left[\frac{31}{36}H_1 + \frac{27}{2}H_{1,0} - \frac{25}{2}H_{1,0,0} - 4H_{-3,0}\right]$ $-\frac{263}{12}H_{0,0}-\frac{29}{3}H_{0,0,0}-\frac{19}{3}H_{-2,0}-\frac{11317}{108}-4H_{-2}\zeta_{2}-8H_{-2,-1,0}-12H_{-2,0,0}-\frac{3}{2}H_{1}\zeta_{2}\Big]$ $+(1+x)\Big[\frac{27}{2}H_0\zeta_2-\frac{43}{6}H_3+\frac{29}{3}H_{2,0}+\frac{4651}{216}H_0-\frac{329}{18}\zeta_2+\frac{11}{2}(1+x)\zeta_3-\frac{43}{5}\zeta_2{}^2-\frac{215}{6}H_{-1,0}$ $-22H_{0.0}\zeta_{2} - 8H_{0}\zeta_{3} - 3H_{-1.-1.0} + 38H_{-1.0.0} + 25H_{-1.2} + 10H_{2.0.0} - 4H_{2}\zeta_{2} + 16H_{3.0} + 26H_{4.0}$ $-\frac{158}{9}H_2 - \frac{53}{2}H_{-1}\zeta_2 \Big] - 29H_{0,0} - \frac{40}{2}H_{0,0,0} + 27H_{-2,0} + \frac{41}{2}H_0\zeta_2 - 20H_3 - 24H_{2,0} + \frac{53}{6}\zeta_2$ $+\frac{601}{12}H_0+24\zeta_3+2\zeta_2^2+27H_2-4H_{0,0}\zeta_2-16H_0\zeta_3-16H_{-3,0}+28xH_{0,0,0,0}+\delta(1-x)\left\lceil\frac{79}{22}\right\rceil$ $-\zeta_{2}\zeta_{3} + \frac{1}{\epsilon}\zeta_{2} + \frac{11}{24}\zeta_{2}^{2} + \frac{67}{\epsilon}\zeta_{3} - 5\zeta_{5}\right] + 16C_{F}n_{f}^{2}\left(\frac{2}{\alpha}x^{2}\left[\frac{11}{\epsilon}H_{0} + H_{2} - \zeta_{2} + 2H_{0,0} - 9\right] + \frac{1}{2}H_{2}$ $-\frac{1}{2}\zeta_{2} - \frac{10}{3}H_{0} - \frac{1}{2}H_{0,0} + 2 + \frac{2}{9}(\frac{1}{x} - x^{2})\left[\frac{8}{3}H_{1} - 2H_{1,0} - H_{1,1} - \frac{77}{18}\right] - (1 - x)\left[\frac{1}{2}H_{1,0} + \frac{1}{6}H_{1,1} - \frac{1}{18}H_{1,0}\right]$ $+\frac{4}{9}+\frac{13}{6}H_{1}+xH_{1}\Big]+\frac{1}{2}(1+x)\Big[\frac{68}{9}H_{0}-\frac{4}{2}H_{2}+\frac{4}{2}\zeta_{2}+\frac{29}{6}H_{0,0}-\zeta_{3}+2H_{0}\zeta_{2}-H_{0,0,0}-2H_{3}$ $-\mathbf{H}_{2,1} - 2\mathbf{H}_{2,0} \Big] + \frac{11}{144} \delta(1-x) \Big) + 16C_F^2 n_f \Big(\frac{4}{2}x^2 \Big[\frac{163}{16} + \frac{27}{8}\mathbf{H}_0 + \frac{7}{2}\mathbf{H}_{0,0} - \mathbf{H}_{2,0} - \zeta_2 + \frac{9}{4}\mathbf{H}_{1,0} \Big]$ $-H_{2,1}+\frac{1}{2}H_{0,0,0}+\frac{85}{16}H_1+H_2-2H_{-2,0}-\frac{3}{2}\zeta_3\Big]+\frac{4}{3}(\frac{1}{x}-x^2)\Big[\frac{31}{16}H_1-\frac{11}{16}-\frac{5}{4}H_{1,0}+\frac{1}{2}H_{1,0,0}-\frac{31}{2}H_{$ $-H_{1}\zeta_{2}-H_{1,1}+H_{1,1,0}+H_{1,1,1}+\zeta_{3}\Big]+\frac{4}{3}(\frac{1}{r}+x^{2})\Big[H_{-1}\zeta_{2}+2H_{-1,-1,0}-H_{-1,0,0}\Big]+\frac{215}{12}H_{0,0}$ $+\frac{20}{3}H_{0}-\frac{131}{6}+3H_{2,0}+\frac{205}{12}x\zeta_{2}-3H_{1,0}+H_{2,1}-\frac{85}{12}H_{1}+\frac{11}{4}H_{2}+8H_{-2,0}+2\zeta_{2}^{2}-H_{0}\zeta_{2}$ $+H_{3}+6H_{0}\zeta_{3}+8H_{-3,0}-4xH_{0,0,0}+(1-x)\left[\frac{107}{12}H_{1}-\frac{5}{2}H_{1,0}-4\zeta_{2}+H_{0}\zeta_{3}-8H_{-2,-1,0}-4\zeta_{2}+H_{0}\zeta_{3}-8H_{-2}-4\zeta_{2}+H_{0}-4\zeta_{2}+H_{0}-4\zeta_{2}+H_{0}-4\zeta_{2}+H_$ $-4H_{-2}\zeta_{2}+4H_{-2,0,0}-4H_{1}\zeta_{2}+\frac{7}{2}H_{1,0,0}-\frac{7}{12}H_{1,1}+H_{1,1,0}+H_{1,1,1}\Big]+(1+x)\Big[\frac{5}{4}H_{2}+\frac{33}{8}H_{2}$ $-\frac{99}{4}H_{0,0} - 8H_{2,0} - \frac{541}{24}H_0 - 4H_{2,1} - \frac{3}{2}H_{0,0,0} - 2x\zeta_3 + \frac{9}{2}\zeta_2^2 + 5H_0\zeta_2 - 5H_3 - 4H_{-1}\zeta_2$ $-8H_{-1,-1,0}+\frac{67}{2}H_{-1,0}+4H_{-1,0,0}+2H_{0,0}\zeta_2-2H_{0,0,0,0}-4H_2\zeta_2+3H_{2,0,0}+2H_{2,1,0}$ $+2H_{2,1,1}+H_{3,1}-2H_4 + \frac{1}{16}\delta(1-x)$

Non-singlet three-loop quantities at small x

20% accuracy by leading $\,x
ightarrow$ 0 logarithm of $\,c^{(3)}_{2,{
m ns}}\colon\,x < 10^{-50}\,\ldots$

Non-singlet three-loop quantities at small x

20% accuracy by leading $\,x
ightarrow$ 0 logarithm of $\,c_{2,{
m ns}}^{(3)}$: $\,x < 10^{-50}$...

Splitting functions and evolution at small $m{x}$

Leading $x \rightarrow 0$ term (BFKL) confirmed but insufficient at colliders

Splitting functions and evolution at small $m{x}$

Small-x limits of splitting functions insufficient for small-x physics

Evolution of flavour singlet distributions

Scale derivatives of quark and gluon distributions at $Q^2 \approx 30 \text{ GeV}^2$

Evolution of flavour singlet distributions

Scale derivatives of quark and gluon distributions at $Q^2 \approx 30 \text{ GeV}^2$

Expansion very stable except for very small momenta $~x \lesssim 10^{-4}$

Higgs boson production at the LHC (II)

 $\hat{\sigma}_{NNLO}$: Harlander, Kilgore (02); Anastasiou, Melnikov (02, 05 [σ_{diff}]) Partons including NNLO: Martin, Roberts, Stirling, Thorne; Aljechin

Stabilization, but still sizeable ($\sim 15\%$) higher-order uncertainties

NNLO gauge boson production at the LHC

diff. $\hat{\sigma}_{\text{NNLO}}$: Anastasiou, Dixon, Melnikov, Petriello (03)

'Gold-plated' processes: NNLO perturbative accuracy better than 1% \Rightarrow use to determine (at least parton-parton) luminosities at the LHC

Form factors of massless quarks and gluons

On-shell m = 0 quark form factor \mathcal{F}_{q} : QCD corr's to $\gamma^{*}qq$ vertex

$$\Gamma_{\mu} = \mathrm{i} e_{\mathrm{q}} \left(\bar{u} \gamma_{\mu} u \right) \mathcal{F}_{\mathrm{q}} (lpha_{\mathrm{s}}, Q^2)$$

Gauge invariant, divergent: dimensional regularization, $D = 4 - 2\varepsilon$

Form factors of massless quarks and gluons

On-shell m = 0 quark form factor \mathcal{F}_q : QCD corr's to $\gamma^* q q$ vertex

$$\Gamma_{\mu} = \mathrm{i} e_{\mathrm{q}} \left(\bar{u} \gamma_{\mu} u \right) \mathcal{F}_{\mathrm{q}} (lpha_{\mathrm{s}}, Q^2)$$

Gauge invariant, divergent: dimensional regularization, $D = 4 - 2\varepsilon$

Gluon form factor \mathcal{F}_{g} : effective Hgg vertex in heavy top-quark limit

$$\mathcal{L}_{ ext{eff}} \;=\; -rac{1}{4}\,C_H\,HG^{\,\,a}_{\mu
u}G^{a,\mu
u}$$

Coefficient C_H known to N³LO Renormalization of $G^{a}_{\mu\nu}G^{a,\mu\nu}$:

Chetyrkin, Kniehl, Steinhauser (97)

$$Z_{G^2} = \left[1 - \beta(a_{\mathsf{s}})/(a_{\mathsf{s}}\varepsilon)\right]^{-1}$$

Extraction of \mathcal{F}_3 from (ϕ) **DIS at third order**

 $a_{
m s}$ expansion of the bare structure functions at large Bjorken-x

$$\begin{split} F_0^{\rm b} &= \delta(1-x) \\ F_1^{\rm b} &= 2 \,\mathcal{F}_1 \,\delta(1-x) + \mathcal{S}_1 \\ F_2^{\rm b} &= (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \delta(1-x) + 2 \,\mathcal{F}_1 \mathcal{S}_1 + \mathcal{S}_2 \\ F_3^{\rm b} &= (2 \,\mathcal{F}_3 + 2 \,\mathcal{F}_1 \mathcal{F}_2) \delta(1-x) + (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \mathcal{S}_1 + 2 \,\mathcal{F}_1 \mathcal{S}_2 + \mathcal{S}_3 \end{split}$$

 \mathcal{F}_l : bare *l*-loop space-like *q* or *g* form factor. \mathcal{S}_l : soft real emissions

Extraction of \mathcal{F}_3 from (ϕ) **DIS at third order**

 $a_{
m s}$ expansion of the bare structure functions at large Bjorken-x

$$\begin{split} F_0^{\rm b} &= \delta(1-x) \\ F_1^{\rm b} &= 2 \,\mathcal{F}_1 \,\delta(1-x) + \mathcal{S}_1 \\ F_2^{\rm b} &= (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \delta(1-x) + 2 \,\mathcal{F}_1 \mathcal{S}_1 + \mathcal{S}_2 \\ F_3^{\rm b} &= (2 \,\mathcal{F}_3 + 2 \,\mathcal{F}_1 \mathcal{F}_2) \delta(1-x) + (2 \,\mathcal{F}_2 + \mathcal{F}_1^{\,2}) \mathcal{S}_1 + 2 \,\mathcal{F}_1 \mathcal{S}_2 + \mathcal{S}_3 \end{split}$$

 \mathcal{F}_l : bare *l*-loop space-like *q* or *g* form factor. \mathcal{S}_l : soft real emissions

$$egin{array}{rcl} \mathcal{S}_k &=& \mathsf{S}_k(arepsilon) \cdot arepsilon [\,(1-x)^{-1-karepsilon}\,]_+ \ &=& \mathsf{S}_k(arepsilon) iggl\{ -rac{1}{k}\,\delta(1-x) + \sum_{i=0}\,rac{(-karepsilon)^i}{i\,!}\,arepsilon\,\mathcal{D}_i\,iggl\} \ , \quad \mathcal{D}_i \ \equiv \ iggl[rac{\ln^i(1-x)}{(1-x)}iggr]_+ \ \end{array}$$

Calculation of F_3^{b} to order $\varepsilon^m \Rightarrow \mathcal{F}_3$ and \mathcal{S}_3 to order ε^{m-1} MVV(2005) : coefficient fct's for (ϕ) DIS + dedicated n_f calc. to $\mathcal{O}(\varepsilon)$

Explicit three-loop contribution to \mathcal{F}_{g}

$$\begin{split} \mathcal{F}_{3}^{g} &= C_{A}^{3} \bigg\{ -\frac{4}{3\epsilon^{6}} + \frac{11}{3\epsilon^{5}} + \frac{361}{81\epsilon^{4}} + \frac{1}{\epsilon^{3}} \left(-\frac{3506}{243} - \frac{517}{54} \zeta_{2} + \frac{22}{3} \zeta_{3} \right) \\ &+ \frac{1}{\epsilon^{2}} \bigg(-\frac{17741}{243} + \frac{481}{162} \zeta_{2} - \frac{209}{27} \zeta_{3} + \frac{247}{90} \zeta_{2}^{2} \bigg) \\ &+ \frac{1}{\epsilon} \bigg(-\frac{145219}{2187} + \frac{20329}{243} \zeta_{2} + \frac{241}{9} \zeta_{3} - \frac{3751}{360} \zeta_{2}^{2} - \frac{85}{9} \zeta_{2} \zeta_{3} - \frac{878}{15} \zeta_{5} \bigg) \bigg\} \\ &+ C_{A}^{2} n_{f} \bigg\{ -\frac{2}{3\epsilon^{5}} - \frac{2}{81\epsilon^{4}} + \frac{1}{\epsilon^{3}} \left(\frac{1534}{243} + \frac{47}{27} \zeta_{2} \right) + \frac{1}{\epsilon^{2}} \bigg(\frac{4280}{243} - \frac{425}{81} \zeta_{2} + \frac{518}{27} \zeta_{3} \bigg) \\ &+ \frac{1}{\epsilon} \bigg(-\frac{92449}{2187} - \frac{7561}{243} \zeta_{2} + \frac{1022}{81} \zeta_{3} + \frac{2453}{180} \zeta_{2}^{2} \bigg) \bigg\} \\ &+ C_{A} C_{F} n_{f} \bigg\{ \frac{20}{9\epsilon^{3}} + \frac{1}{\epsilon^{2}} \bigg(\frac{526}{27} - \frac{160}{9} \zeta_{3} \bigg) + \frac{1}{\epsilon} \bigg(\frac{2783}{81} - \frac{22}{3} \zeta_{2} - \frac{224}{27} \zeta_{3} - \frac{176}{15} \zeta_{2}^{2} \bigg) \bigg\} \\ &+ C_{A} n_{f}^{2} \bigg\{ -\frac{8}{81\epsilon^{4}} - \frac{80}{243\epsilon^{3}} + \frac{1}{\epsilon^{2}} \bigg(\frac{8}{9} + \frac{20}{27} \zeta_{2} \bigg) + \frac{1}{\epsilon} \bigg(\frac{34097}{2187} + \frac{200}{81} \zeta_{2} + \frac{664}{81} \zeta_{3} \bigg) \bigg\} \\ &+ C_{F}^{2} n_{f} \bigg\{ \frac{2}{3\epsilon} \bigg\} + C_{F} n_{f}^{2} \bigg\{ \frac{8}{9\epsilon^{2}} + \frac{1}{\epsilon} \bigg(\frac{424}{27} - \frac{32}{3} \zeta_{3} \bigg) \bigg\} \\ &+ C_{g}^{2} \zeta_{3}, \ \zeta_{5} \leftrightarrow MSYM \\ \text{Bern, Dixon, Smirnov (05)} \end{split}$$

Pole structure of
$$\,qar q o \gamma^*$$
 and $\,gg o H$

 $lpha_{
m s}^n$ expansion coefficients of bare partonic cross sections to $\,n=3$

$$\begin{split} W_0^{\rm b} &= \delta(1-x) & \text{cf. Matsuura, van Neerven (88)} \\ W_1^{\rm b} &= 2 \, {\rm Re} \, \mathcal{F}_1 \, \delta(1-x) + \mathcal{S}_1 \\ W_2^{\rm b} &= (2 \, {\rm Re} \, \mathcal{F}_2 + |\mathcal{F}_1|^2) \delta(1-x) + 2 \, {\rm Re} \, \mathcal{F}_1 \mathcal{S}_1 + \mathcal{S}_2 \\ W_3^{\rm b} &= (2 \, {\rm Re} \, \mathcal{F}_3 + 2 \, |\mathcal{F}_1 \mathcal{F}_2|) \delta(1-x) + (2 \, {\rm Re} \, \mathcal{F}_2 + |\mathcal{F}_1|^2) \mathcal{S}_1 + 2 \, {\rm Re} \, \mathcal{F}_1 \mathcal{S}_2 + \mathcal{S}_3 \end{split}$$

 \mathcal{F}_l : bare *l*-loop time-like *q* or *g* form factor, \mathcal{S}_l : soft real emissions

$$\mathcal{S}_k \ = \ \mathsf{S}_k(arepsilon) \cdot arepsilon [\,(1-x)^{-1-2karepsilon}\,]_+ \ = \ \mathsf{S}_k(arepsilon) igg[-rac{1}{2k}\,\delta(1-x) + \sum_{i=0}\,rac{(-2karepsilon)^i}{i\,!}\,arepsilon\,\mathcal{D}_iigg]$$

Pole structure of
$$\,qar q o \gamma^*$$
 and $\,gg o H$

 $lpha_{
m s}^n$ expansion coefficients of bare partonic cross sections to $\,n=3$

$$\begin{split} W_0^{\rm b} &= \delta(1-x) & \text{cf. Matsuura, van Neerven (88)} \\ W_1^{\rm b} &= 2 \, {\rm Re} \, \mathcal{F}_1 \, \delta(1-x) + \mathcal{S}_1 \\ W_2^{\rm b} &= (2 \, {\rm Re} \, \mathcal{F}_2 + |\mathcal{F}_1|^2) \delta(1-x) + 2 \, {\rm Re} \, \mathcal{F}_1 \mathcal{S}_1 + \mathcal{S}_2 \\ W_3^{\rm b} &= (2 \, {\rm Re} \, \mathcal{F}_3 + 2 \, |\mathcal{F}_1 \mathcal{F}_2|) \delta(1-x) + (2 \, {\rm Re} \, \mathcal{F}_2 + |\mathcal{F}_1|^2) \mathcal{S}_1 + 2 \, {\rm Re} \, \mathcal{F}_1 \mathcal{S}_2 + \mathcal{S}_3 \end{split}$$

 \mathcal{F}_l : bare *l*-loop time-like *q* or *g* form factor, \mathcal{S}_l : soft real emissions

$$\mathcal{S}_k \ = \ \mathsf{S}_k(arepsilon) \cdot arepsilon [\, (1-x)^{-1-2karepsilon}\,]_+ \ = \ \mathsf{S}_k(arepsilon) igg[-rac{1}{2k}\,\delta(1-x) + \sum_{i=0}\, rac{(-2karepsilon)^i}{i\,!}\,arepsilon\,\mathcal{D}_iigg]$$

Poles in $\varepsilon = 2 - D/2$: KLN, renormalization, mass factorization

 $1/\varepsilon$ pieces of \mathcal{F}_n + *n*-loop splitting fct's $\rightarrow 1/\varepsilon$ coefficients of S_n \rightarrow all soft-enhanced $\mathcal{D}_{2n-1,...,0}$ terms of NⁿLO coefficient fct's c_n

Higgs boson production at the LHC (III)

N³LO increase at $\mu_r = M_H$: 5% (NNLO pdf's). μ_r variation: 4% \Rightarrow 5% accuracy reached by approx. N³LO Moch, A.V. (2005)

Coefficient functions at large x / large N

Threshold: inhibited radiation $\Rightarrow \log^2$ -enhanced corrections

Scaling variable x, moments N

$$lpha_{\mathsf{s}}^k \left[rac{\ln^{2l-1}(1-x)}{1-x}
ight]_+$$

$$lpha_{\mathsf{s}}^k \, \ln^{2l} N$$
 , $l=1,\ldots,k$

,

 $lpha_{
m s}$ expansion spoiled for x o 1, $N o\infty$ \Rightarrow resummation

Example: DIS, only x**-dep. case** fully known to N³LO MVV(05)

1.5
(
$$a_{s}^{k} c_{2,q}^{(k)} \otimes f$$
) / f
 $xf = x^{0.5} (1-x)^{3}$
1
---- k = 1
---- k = 2
k = 3
0.5
0
 $\alpha_{s} = 0.2, N_{f} = 4$
0
0
X

Soft gluon exponentiation

 $\overline{\text{MS}}$ coefficient functions for few-parton cases, large Mellin-N

$$C^N/C_{\mathsf{LO}}^N = g_0 \cdot \exp \mathcal{G}^N + \mathcal{O}(N^{-1} \ln^n N)$$

 $g_0: N^0$ contributions, \mathcal{G}^N : resummation of $\ln^n N$ terms

Sterman (87); Catani, Trentadue (89); ...

Drell-Yan, DIS

$$egin{array}{rcl} \mathcal{G}_{\mathsf{DY}}^N &=& 2\,\ln\Delta_q+\ln\Delta_{\mathsf{DY}}^{\mathsf{int}} \ \mathcal{G}_{\mathsf{DIS}}^N &=& \ln\Delta_q+\ln J_q+ \underbrace{\ln\Delta_{\mathsf{DIS}}^{\mathsf{int}}}_{=& 0 \end{array}$$

Forte, Ridolfi; Gardi, Roberts (02)

gg
ightarrow H for large $m_{ ext{top}} \Leftrightarrow$ Drell-Yan

Direct photons in $\, pp$, $ab
ightarrow c\,\gamma$

Catani, Mangano, Nason (98)

Soft collinear radiation off initial-state parton p = q, g

$$\ln \Delta_{\mathsf{p}} \, = \, \int_{0}^{1} dz \, rac{z^{N-1}-1}{1-z} \, \int_{\mu_{f}^{2}}^{(1-z)^{2}Q^{2}} rac{dq^{2}}{q^{2}} \, A_{\mathsf{p}}(lpha_{\mathsf{s}}(q^{2}))$$

Collinear emission off 'unobserved' final-state parton

$$\ln J_{\mathsf{p}} \ = \ \int_{0}^{1} dz \, rac{z^{N-1}-1}{1-z} \, \left[\int_{(1-z)^{2}Q^{2}}^{(1-z)Q^{2}} rac{dq^{2}}{q^{2}} \, A_{\mathsf{p}}(lpha_{\mathsf{s}}(q^{2})) + B_{\mathsf{p}}(lpha_{\mathsf{s}}([1-z]Q^{2}))
ight]$$

Large-angle soft gluons, process-dependent

$$\ln\Delta^{\mathsf{int}} = \int_0^1 dz \, rac{z^{N-1}-1}{1-z} \, D(lpha_{\mathsf{s}}([1-z]^2 Q^2)))$$

Integrands of $\Delta_{\rm p}, J_{\rm p}, \Delta^{\rm int}$: power expansions in $a_{
m s}=rac{lpha_{
m s}}{4\pi}$

$$F(\alpha_{s}) = \sum_{l=1} F_{l} a_{s}^{l}, \quad F = A, B, D$$

The resummation exponents

Up to next-to-next-to-leading logarithmic (N³LL) accuracy

$$\mathcal{G}^N = \ln N g_1(\lambda) + g_2(\lambda) + a_{
m s} g_3(\lambda) + a_{
m s}^2 g_4(\lambda) \,\,,\,\,\,\,\lambda = eta_0 a_{
m s} \ln N$$

Integrations for g_3, g_4, \ldots :

A.V. (00); Catani, de Florian, Grazzini, Nason (03) MVV (05) [← XSUMMER package: Moch, Uwer (05)]

The resummation exponents

Up to next-to-next-to-leading logarithmic (N³LL) accuracy

$$\mathcal{G}^N = \ln N g_1(\lambda) + g_2(\lambda) + a_{\mathrm{s}} g_3(\lambda) + a_{\mathrm{s}}^2 g_4(\lambda) \,, \,\,\,\, \lambda = eta_0 a_{\mathrm{s}} \ln N$$

Integrations for g_3, g_4, \ldots : A.V. (00); Catani, de Florian, Grazzini, Nason (03) MVV (05) [← XSUMMER package: Moch, Uwer (05)]

Dependence on coefficients

$$egin{array}{rcl} g_1 &=& g_1(\lambda,A_1,eta_0) \ g_2 &=& g_1(\dots,A_2,B_1,D_1,eta_1) \ dots \ g_k &=& g_k(\dots,A_k,B_{k-1},D_{k-1},eta_{k-1}) \end{array}$$

 $N^{n}LO$ calculation (B_{n}, D_{n}) $\Rightarrow N^{n}LL$ resummation (mod. A_{n+1})

M[V]V (05): N³LL for incl. (ϕ)DIS, lepton-pair and Higgs production

Coeff's D_l for Drell-Yan and Higgs production

Maximally non-abelian, $C_I = C_F$ (DY), $C_I = C_A$ (Higgs) with

$$\mathbf{D_1} = 0$$

$$\mathbf{D_2} = C_I \left[C_A \left(-\frac{1616}{27} + \frac{176}{3} \zeta_2 + 56 \zeta_3 \right) + n_f \left(\frac{224}{27} - \frac{32}{3} \zeta_2 \right) \right]$$

Catani, Trentadue (89) [D_1]; A.V. (00); Catani, de Florian, Grazzini, Nason (03)

$$\begin{aligned} \mathbf{D_3} &= C_I C_A^2 \left[-\frac{594058}{729} + \frac{98224}{81} \zeta_2 + \frac{40144}{27} \zeta_3 - \frac{2992}{15} \zeta_2^2 - \frac{352}{3} \zeta_2 \zeta_3 - 384 \zeta_5 \right] \\ &+ C_I C_A n_f \left[\frac{125252}{729} - \frac{29392}{81} \zeta_2 - \frac{2480}{9} \zeta_3 + \frac{736}{15} \zeta_2^2 \right] \\ &+ C_I C_F n_f \left[\frac{3422}{27} - 32 \zeta_2 - \frac{608}{9} \zeta_3 - \frac{64}{5} \zeta_2^2 \right] - C_I n_f^2 \left[\frac{3712}{729} - \frac{640}{27} \zeta_2 - \frac{320}{27} \zeta_3 \right] \end{aligned}$$

Moch, A.V. (05); Laenen, Magnea (05) [DY]; ...

Simple relation of D_n with form-factor resummation coefficients f_n

Higgs production at LHC (IV) and Tevatron

Ravindran, Smith, van Neerven (03)

N³LL resummation confirms N³LO error estimate

Moch, A.V. (2005)

Parton evolution via Mellin *N***-space**

Evolution equations \rightarrow ordinary matrix differential eqn. for each N

$$a(N) = \int_0^1 dx \, x^{N-1} a(x) \quad \Rightarrow \quad (a \otimes b)(N) = a(N) \, b(N)$$

Solution by time-ordered exponential, expanded around LO result

$$q(N,\mu_{
m f}^2) = \Big[1 + \sum a_{
m s}^k \, U_k(N)\Big] \, \Big(rac{a_{
m s}}{a_0}\Big)^{-R_0(N)} \Big[1 + \sum a_0^k \, U_k(N)\Big]^{-1} \, q(N,\mu_0^2)$$

 $R_0 = P_0/eta_0$, $U_k = f(P_{i\leq k},eta_{i\leq k})$ iterative (commutation relations)

Parton evolution via Mellin *N***-space**

Evolution equations \rightarrow ordinary matrix differential eqn. for each N

$$a(N) = \int_0^1 dx \, x^{N-1} a(x) \quad \Rightarrow \quad (a \otimes b)(N) = a(N) \, b(N)$$

Solution by time-ordered exponential, expanded around LO result

$$q(N,\mu_{
m f}^2) = \left[1 + \sum a_{
m s}^k U_k(N)
ight] \left(rac{a_{
m s}}{a_0}
ight)^{-R_0(N)} \left[1 + \sum a_0^k U_k(N)
ight]^{-1} q(N,\mu_0^2)$$

 $R_0 = P_0/eta_0$, $U_k = f(P_{i\leq k},eta_{i\leq k})$ iterative (commutation relations)

Inverse Mellin transformation

$$a(x) \;=\; rac{1}{2\pi i}\,\int_{\mathcal{C}}\,dN\,x^{-\,N}\;a(N)$$

Contour C_1 : exponential damping

$$\sim \exp\left(z\ln(1/x)\cos\phi\right)$$

Published package (rigid contour): QCD-Pegasus

A.V. (2004)

Benchmark results for parton evolution codes

G. Salam, A.V. (2002, 05)

Evolution of Les Houches (2001) reference input

$$egin{array}{rll} xu_v(x,\mu_{{
m f},0}^2) &=& 5.1072 \ x^{0.8} \ (1-x)^3 \ , \ \ldots \ xg \ (x,\mu_{{
m f},0}^2) &=& 1.7000 \ x^{-0.1} \ (1-x)^5 \end{array}$$

with

$$lpha_{
m s}(\mu_{
m r}^2=2~{
m GeV}^2)~=~0.35$$

at LO, NLO, NNLO, for $\,\mu_{
m r} = \{0.5,\ 1,\ 2\}\,\mu_{
m f}$, with fixed/variable $N_{\!f}$

Two completely different codes. G.S.: discretization in x and $\mu_{\rm f}$, f90 Five-figure agreement over wide range in $x, \, \mu_{\rm f}^2 \to$ reference tables

Example: NNLO, $\mu_{\rm r} = 2\mu_{\rm f}$, $N_f = 4$ at $x = 10^{-4}$, $\mu_{\rm f}^2 = 10^4 \ {\rm GeV}^2$ $xu_v = 1.3206 \cdot 10^{-2}$, ..., $xq = 9.0162 \cdot 10^1$

Observables via Mellin *N***-space**

Direct method requires analytic coefficient-function moments, e.g.,

$$rac{1}{x}\,F_2(x,Q^2)\ =\ rac{1}{2\pi i}\,\int_{\mathcal{C}} dN\,x^{-N}\,C_{a,p}(N,a_{
m s},Q^2,\mu_{
m f}^2)\,f_p(N,\mu_{
m f}^2)$$

General DIS observables: $\hat{\sigma}$ with more integrations, exp. cuts, . . .

$$\sigma(x,Q^2) \,=\, \int_{y_{
m min}}^1 dy\, f_p(y,\mu_{
m f}^2)\, \widehat{\sigma}_p(x,y,Q^2,\mu_{
m f}^2)$$

Observables via Mellin *N***-space**

Direct method requires analytic coefficient-function moments, e.g.,

$$rac{1}{x}\,F_2(x,Q^2)\ =\ rac{1}{2\pi i}\,\int_{\mathcal{C}} dN\,x^{-N}\,C_{a,p}(N,a_{
m s},Q^2,\mu_{
m f}^2)\,f_p(N,\mu_{
m f}^2)$$

General DIS observables: $\hat{\sigma}$ with more integrations, exp. cuts, . . .

$$\sigma(x,Q^2) \ = \ \int_{y_{
m min}}^1 dy \, f_p(y,\mu_{
m f}^2) \ \widehat{\sigma}_p(x,y,Q^2,\mu_{
m f}^2)$$

Pseudo-moment method: insert inverse $N \rightarrow x$ trf. for f_p , rearrange

$$\sigma(x,Q^2) \;=\; rac{1}{2\pi i}\,\int_{\mathcal{C}} dN\, f_p(N,\mu_{
m f}^2)\, \widetilde{\sigma}_p(x,N,Q^2,\mu_{
m f}^2)$$

with

$$\widetilde{\sigma}_{p}(x,N,Q^{2},\mu_{
m f}^{2}) \;=\; \int_{y_{
m min}}^{1} dy \, y^{-N} \; \widehat{\sigma}_{p}(x,y,Q^{2},\mu_{
m f}^{2})$$

[Berger, Graudenz, Hampel, A.V. (95)], Kosower (97); Stratmann, Vogelsang (00) $\tilde{\sigma}$: pre-calculate / store for each N, data bin, parton p, order, scale $\mu_{\rm f}$ $pp/p\bar{p}$ observables : corresponding procedure (double integrations)

Summary and outlook

 $1/\varepsilon$ poles of three-loop deep-inelastic scattering $O(\alpha_s^3)$ splitting functions for evolution of parton distributions Full NNLO for crucial LHC processes: Drell-Yan, $pp \to H+X$

Summary and outlook

 $1/\varepsilon$ poles of three-loop deep-inelastic scattering $O(\alpha_s^3)$ splitting functions for evolution of parton distributions Full NNLO for crucial LHC processes: Drell-Yan, $pp \to H+X$

 ε^0 terms of three-loop deep-inelastic scattering

- N³LO coefficient functions for inclusive structure functions $\Delta \alpha_s(M_Z^2) \simeq 1\%$ from truncation of DIS perturbation series
- On-shell form factors of quarks and gluons to higher order approx. N³LO for (total) cross section for Higgs production
- Threshold resummation of soft gluons to higher accuracy universal coefficients $B_{q,g}$, $D_{\text{DY/Higgs}}$ to $O(\alpha_s^3) \rightarrow N^3L \log s$

Summary and outlook

 $1/\varepsilon$ poles of three-loop deep-inelastic scattering $O(\alpha_s^3)$ splitting functions for evolution of parton distributions Full NNLO for crucial LHC processes: Drell-Yan, $pp \rightarrow H+X$

 ε^0 terms of three-loop deep-inelastic scattering

- N³LO coefficient functions for inclusive structure functions $\Delta lpha_{\rm s}(M_Z^2) \simeq 1\%$ from truncation of DIS perturbation series
- On-shell form factors of quarks and gluons to higher order approx. N³LO for (total) cross section for Higgs production
- Threshold resummation of soft gluons to higher accuracy universal coefficients $B_{q,g}$, $D_{\text{DY/Higgs}}$ to $O(\alpha_s^3) \rightarrow N^3 L \log s$

Partons and observables via complex Mellin space Precision benchmarks, efficient higher-order analyses of data