### **Diffractive structure function** $F_L$ from the analysis with higher twist

Agnieszka Łuszczak

Institute of Nuclear Physics PAN, Cracow

in collaboration with Krzysztof Golec-Biernat

Cracow Epiphany Conference, January 4-6, 2007

Diffractive  $F_{T}$  – p. 1/17

## **Motivation**

- Consistent description of diffractive structure function  $F_2^D$  measured at HERA in the analysis with higher twist-4.
- Predictions for diffractive structure function  $F_L^D$  supposed to be measured at HERA.

# OUTLINE

- Diffractive structure functions.
- Detailes of the description.
- Results of the analysis.
- Summary and outlook.

## **Diffractive DIS**

- **DIS** diffractive process:  $e \ p \rightarrow e \ p' X$ .
- Several dimensional scales involved:
  - $Q^2$  photon virtuality
  - $t = (p p')^2$  squared four momentum transfer
  - $M^2$  squared invariant mass of diffractive system
  - $W^2$  squared invariant energy of  $\gamma^* p$



- Exchange of the pomeron  $I\!P$  with partonic structure.
- $x_{I\!P}$ : fraction of the proton momentum carried by the pomeron.
- $\beta$ : fraction of the pomeron momentum carried by the struck quark.

The four-fold diffractive cross section is given in terms of the diffractive structure functions  $F_2^D$  and  $F_L^D$ :

$$\frac{d^4 \sigma^D}{d\beta \, dQ^2 \, dx_{I\!\!P} \, dt} = \frac{2\pi \alpha_{em}^2}{\beta \, Q^4} \left( 1 + (1-y)^2 \right) \left\{ F_2^D - \frac{y^2}{1 + (1-y)^2} F_L^D \right\}.$$

Both structure functions depend on four kinematic variables  $(\beta, Q^2, x_{I\!\!P}, t) \text{ defined as follows:}$ 

$$x_{I\!\!P} = \frac{Q^2 + M^2 - t}{Q^2 + W^2} , \qquad \qquad \beta = \frac{Q^2}{Q^2 + M^2 - t} ,$$

The diffractive structure functions are measured in a certain range of t, thus the integrated structure functions are defined:

$$F_{2,L}^{D(3)}(\beta, Q^2, x_{I\!\!P}) = \int_{-|t_{max}|}^{-|t_{min}|} dt F_{2,L}^D(\beta, Q^2, x_{I\!\!P}, t).$$

- Comprehensive analysis of diffractive structure function data from HERA.
- We analyse H1 and ZEUS data sets separately (no global fit).
- Analysis with the following elements:
  - twist-2 contribution with diffractive parton distributions
  - twist-4 contribution
  - reggeon contribution
- Predictions on longitudinal structure function from this analysis.

#### **Diffractive structure functions**

In the QCD approach DSF decomposed into twist-2 and twist-4 contributions:

$$F_{2,L}^D(x_{I\!\!P}, t, \beta, Q^2) = F_{2,L}^{D(tw2)} + F_{2,L}^{D(tw4)} + \dots$$

Twist-2 part given in terms of diffractive parton distributions (DPD):

$$F_2^{D(tw2)} = \sum_f e_f^2 \beta \left\{ q_f^D + \overline{q}_f^D \right\} + \alpha_s \cdot NLL(q_f^D, g^D)$$
$$F_L^{D(tw2)} = 0 + \alpha_s \cdot NLL(q_f^D, g^D)$$

Regge form of DPD with pomeron flux  $f_{IP}$  and pomeron parton distributions ( $I\!PPD$ )

$$q^{D}(\beta, Q^{2}, x_{I\!\!P}, t) = f_{I\!\!P}(x_{I\!\!P}, t) q^{I\!\!P}(\beta, Q^{2}).$$

- **P**PD evolve with  $Q^2$  through DGLAP evolution equations.
- **P**PD at initial scale  $Q_0^2$  contain 6 fitted parameters

 $\Sigma^{I\!P}(\beta, Q_0^2) = A_S \beta^{B_S} (1-\beta)^{C_S}$  $G^{I\!P}(\beta, Q_0^2) = A_G \beta^{B_G} (1-\beta)^{C_G}$ 

Pomeron intercept  $\alpha_{IP}$  in pomeron flux is the 7<sup>th</sup> parameter

 $f(x_{I\!\!P}) \sim x_{I\!\!P}^{1-2\alpha_{I\!\!P}}$ 

#### **Twist-4 contribution**



In our analysis diffractive structure functions are of the form:

$$F_2^D = F_2^{D(tw2)} + F_{Lq\bar{q}}^{D(tw4)} + F_2^{D(R)}$$

$$F_L^D = F_L^{D(tw2)} + F_{Lq\bar{q}}^{D(tw4)}$$

- $x_{IP}$ -dependence of twist-4 contribution computed using saturation model of GBW.
- In addition,  $f_2$  and  $\omega$  reggeon exchange contributions important for large  $x_{I\!P} > 0.01$ :

$$F_2^{D(R)} = f_R(x_{I\!\!P}, t) \left( A_R \beta^{-0.08} \right)$$

## Fits to data

| Collaboration | Data                    | t-range [GeV <sup>2</sup> ] | $Q^2$ -range | $\beta$ -range |  |
|---------------|-------------------------|-----------------------------|--------------|----------------|--|
| H1 (72)       | leading proton          | 0.08 <  t  < 0.5            | [2.0, 50]    | [0.02, 0.7]    |  |
| H1 (276)      | $M_Y < 1.6 \; { m GeV}$ | $ t_{min}  <  t  < 1$       | [3.5, 1600]  | [0.0017, 0.8]  |  |
| ZEUS (80)     | leading proton          | 0.075 <  t  < 0.35          | [2.0, 100]   | [0.007, 0.48]  |  |
| ZEUS (198)    | $M_Y < 2.3~{ m GeV}$    | $ t_{min}  <  t  < \infty$  | [2.2, 80]    | [0.003, 0.975] |  |

## Fit results for 7 parameters

| Data | Fit      | $\alpha_{I\!\!P}$ | $A_S$ | $B_S$ | $C_S$ | $A_G$ | $B_G$ | $C_G$ | $\chi^2/N$ |
|------|----------|-------------------|-------|-------|-------|-------|-------|-------|------------|
| H1   | tw-2     | 1.05              | 0.64  | 0.31  | -0.43 | 34.6  | 0.62  | 9.23  | 0.60       |
| (lp) | tw-2+4   | 1.04              | 0.64  | 0.23  | -0.40 | 20.4  | 0.43  | 8.62  | 0.5        |
| H1   | tw-2     | 1.08              | 1.53  | 1.08  | 0.31  | 3.10  | 0.10  | 0.59  | 1.1        |
|      | tw-2+4   | 1.10              | 2.17  | 1.83  | 0.70  | 1.32  | -0.04 | -0.48 | 1.29       |
|      | tw-2+reg | 1.13              | 1.31  | 1.60  | 0.49  | 1.66  | 0.20  | -0.01 | 0.93       |
|      | 2+4+reg  | 1.14              | 2.01  | 2.40  | 0.89  | 0.89  | 0.12  | -0.55 | 1.0        |

## **Fit quality**



#### **Diffractive PD from fits**



• Large impact of twist-4 fit on gluon distribution for  $\beta \rightarrow 1$ .

#### **Predictions for diffractive** $F_L$



• Large impact of twist-4 analysis on predictions for  $F_L^D$ .

## **Summary and outlook**

- **•** Twist-4 is important in data description for  $\beta > 0.7$ .
- **•** Twist-4 strongly influences gluon distribution at  $\beta \rightarrow 1$
- $F_L$  with twist-4 contribution is significantly different from  $F_L$  with twist-2 only in the region of  $\beta > 0.4$ .
- Solution Regge contribution improves fit quality through better  $x_{IP}$ -shape.
- Outlook: ZEUS data analysis.

## Why gluon is large ?

Pomeron exchange carries vacuum quantum numbers

$$q_{f}^{I\!\!P}(\beta, Q^{2}) = \overline{q}_{f}^{I\!\!P}(\beta, Q^{2}) = \frac{1}{N_{f}} \Sigma^{I\!\!P}(\beta, Q^{2}),$$

▶  $\Sigma^{I\!\!P}(\beta, Q^2)$  - is singlet quark distribution



 $\Sigma \int P_{qq}$  - describes virtual contribution

#### **Answer from our fits**

Solution We fix  $\beta$  (diffractive analogue of Bjorken variable) in  $\Sigma^{I\!\!P}(\beta, Q^2)$ 



## How important is Regge term ?



• Changes DPD up to 50%.