Transverse momentum distributions for Standard Model boson production at the LHC

Anna Kulesza (DESY)

Cracow Epiphany Conference, 4-6 January 2007

LHC as W, Z factory

\square large cross sections for W/Z production processes

- **\square** large cross sections for W/Z production processes
- measurement of the transverse momentum (p_T) distribution ⇒ one of the early benchmarks to be established

- **\square** large cross sections for W/Z production processes
- measurement of the transverse momentum (p_T) distribution ⇒ one of the early benchmarks to be established
- $ho_{
 m T}$ distribution measurement important for
 - \Rightarrow determination of M_W
 - \Rightarrow determination of parton distribution functions

- **\square** large cross sections for W/Z production processes
- measurement of the transverse momentum ($p_{\rm T}$) distribution ⇒ one of the early benchmarks to be established
- **9** p_{T} distribution measurement important for
 - \Rightarrow determination of M_W
 - \Rightarrow determination of parton distribution functions
- Inter: W/Z production as a possible luminosity monitor

- Iarge cross sections for W/Z production processes
- measurement of the transverse momentum (p_T) distribution \Rightarrow one of the early benchmarks to be established
- ${}_{m{P}{
 m T}}$ distribution measurement important for
 - \Rightarrow determination of M_W
 - \Rightarrow determination of parton distribution functions
- Iater: W/Z production as a possible luminosity monitor
- LHC as Higgs discovery machine
 - important to fully exploit the physics potential of the production processes
 need to know differential distributions

Theoretical status

Drell-Yan type processes:

 $\begin{array}{l} q\bar{q} \rightarrow \gamma^{*} + X \\ q\bar{q} \rightarrow Z + X \\ q\bar{q'} \rightarrow W^{\pm} + X \end{array}$

 $gg \rightarrow H + X$

(large m_t approximation)

Theoretical status

Drell-Yan type processes:

(large m_t approximation)

QCD corrections $-p_{T}$ distribution known up to NLO $(\mathcal{O}(\alpha_{s}^{2}))$ correction [*Ellis, Martinelli, Petronzio'81*] [*de Florian, Grazzini, Kunszt'99*] [*Arnold et al.'89-'90*] [*Ravindran, Smith, van Neerven'02-'03*] [*Gonsalves, Pawłowski, Wai'89*] [*Glosser, Schmidt'02*] [*Anastasiou et al.'03-'05*]

Theoretical status

Drell-Yan type processes:

(large m_t approximation)

QCD corrections $-p_{T}$ distribution known up to NLO $(\mathcal{O}(\alpha_{s}^{2}))$ correction [*Ellis, Martinelli, Petronzio'81*] [*de Florian, Grazzini, Kunszt'99*] [*Arnold et al.'89-'90*] [*Ravindran, Smith, van Neerven'02-'03*] [*Gonsalves, Pawłowski, Wai'89*] [*Glosser, Schmidt'02*] [*Anastasiou et al.'03-'05*]

recently, also effects of real weak boson emission analysed [Baur'06]

Transverse momentum distribution in Drell-Yan type processes

multiple scale problem $p_{\rm T}$, Q , \hat{s} \Rightarrow hierarchy of the scales important

Transverse momentum distribution in Drell-Yan type processes

multiple scale problem $p_{\rm T}$, $Q,\, \hat{s} \Rightarrow$ hierarchy of the scales important

At small $p_{\rm T}$, $p_{\rm T} \ll Q$, large terms containing powers of $\log \left(p_{\rm T}^2/Q^2 \right)$ in QCD corrections

Transverse momentum distribution in Drell-Yan type processes

multiple scale problem $p_{\rm T}$, Q, \hat{s} \Rightarrow hierarchy of the scales important

- At small $p_{\rm T}$, $p_{\rm T} \ll Q$, large terms containing powers of $\log \left(p_{\rm T}^2/Q^2 \right)$ in QCD corrections
- At large $p_{\rm T}$, possible enhancements due to threshold logarithms $\log(1-z)$, $z = Q^2/\hat{s}$

Transverse momentum distribution in Drell-Yan type processes

multiple scale problem $p_{\rm T}$, Q, \hat{s} \Rightarrow hierarchy of the scales important

- S At small $p_{\rm T}$, $p_{\rm T} \ll Q$, large terms containing powers of $\log \left(p_{\rm T}^2/Q^2 \right)$ in QCD corrections
- At large $p_{\rm T}$, possible enhancements due to threshold logarithms $\log(1-z)$, $z = Q^2/\hat{s}$
- Solution For Drell-Yan (γ^*), $\log (p_T^2/Q^2)$ terms also important in the $p_T \gg Q$ regime (different kinematical origin from small p_T logs)

Transverse momentum distribution in Drell-Yan type processes

multiple scale problem $p_{\rm T}$, Q, $\hat{s} \Rightarrow$ hierarchy of the scales important

- At small $p_{\rm T}$, $p_{\rm T} \ll Q$, large terms containing powers of $\log \left(p_{\rm T}^2/Q^2 \right)$ in QCD corrections
- At large $p_{\rm T}$, possible enhancements due to threshold logarithms $\log(1-z)$, $z = Q^2/\hat{s}$
- Solution For Drell-Yan (γ^*), $\log (p_T^2/Q^2)$ terms also important in the $p_T \gg Q$ regime (different kinematical origin from small p_T logs)
- S At large $p_{
 m T}$, EW effects also important powers of $\log\left(M_W^2/\hat{s}
 ight)$

Small p_{T}

$$\frac{d\sigma^{q\bar{q}\to\gamma^*}}{dQ^2dp_{\mathrm{T}}^2dy}\Big|_{p_{\mathrm{T}}\ll Q} = \sigma_0\left(\frac{\alpha_s C_F}{\pi}\right)\frac{1}{p_{\mathrm{T}}}\log\frac{Q^2}{p_{\mathrm{T}}^2}\left[f_q\left(x_1 = \sqrt{\frac{Q^2}{\hat{s}}}e^y, m^2\right)f_{\bar{q}}\left(x_2 = \sqrt{\frac{Q^2}{\hat{s}}}e^{-y}, m^2\right) + (q\leftrightarrow\bar{q})\right]$$
[Ellis, Martinelli, Petronzio'81]

Small p_{T}

$$\frac{d\sigma^{q\bar{q}\to\gamma^*}}{dQ^2dp_{\mathrm{T}}^2dy}\Big|_{p_{\mathrm{T}}\ll Q} = \sigma_0\left(\frac{\alpha_s C_F}{\pi}\right)\frac{1}{p_{\mathrm{T}}}\log\frac{Q^2}{p_{\mathrm{T}}^2}\left[f_q\left(x_1=\sqrt{\frac{Q^2}{\hat{s}}}e^y,m^2\right)f_{\bar{q}}\left(x_2=\sqrt{\frac{Q^2}{\hat{s}}}e^{-y},m^2\right) + (q\leftrightarrow\bar{q})\right]$$

$$\begin{bmatrix}Ellis, \text{ Martinelli, Petronzio'81}\end{bmatrix}$$

At higher orders:

Structure: $\mathcal{O}(\alpha_s^n)$ $\alpha_s^n \log^m \left(\frac{p_T^2}{Q^2}\right)$ $0 \le m \le 2n-1$ Origin:soft/collinear gluon emission

if $\alpha_s \log^2 \left(p_T^2/Q^2 \right) \gtrsim 1$ then traditional fixed-order perturbation theory breaks down

 \Rightarrow leads to explicitly divergent cross section in $p_{\rm T} \rightarrow 0$ limit

Small p_{T}

Systematic treatment of higher order corrections provided by resummation techniques [*Parisi, Petronzio'79*] [*Collins, Soper'83*] [*Collins, Soper, Sterman'85*]

$$\delta\left(\mathbf{p}_{\mathrm{T}}-\sum_{i}\mathbf{k}_{\mathrm{T}}^{i}\right) = \frac{1}{2\pi^{2}}\int d^{2}b e^{i\mathbf{b}(\mathbf{p}_{\mathrm{T}}-\sum_{i}\mathbf{k}_{\mathrm{T}}^{i})}$$

Higher order corrections are summed in the Fourier conjugate to $p_{\rm T}$, b space

$$\ln(p_{\rm T}^2/Q^2) \leftrightarrow \ln(b^2Q^2)$$

Small p_{T} : resummation

CSS formalism: resummation of all terms in the perturbation series which are as singular as $1/p_{\rm T}^2$ when $p_{\rm T} \rightarrow 0$. [Collins, Soper, Sterman'85] $\frac{d\sigma^{\text{res}}}{dp_{-}^{2}} = \frac{\tau}{2} \int db J_{0}(p_{\text{T}}b) W(b,Q) + Y_{\text{fin.}} \qquad \tau = Q^{2}/s$ $W(b,Q) = \sum_{i} \sigma_0 \int_0^1 dx_a dx_b \delta(x_a x_b - \tau) \int_{x_a}^1 \frac{dz_a}{z_a} \int_{x_b}^1 \frac{dz_b}{z_b} \mathcal{C}_{i/a}(\frac{x_a}{z_a}, b_0/b) f_{a/A}(z_a, b_0/b)$ $\times \mathcal{C}_{j/b}(\frac{x_b}{z_i}, b_0/b) f_{b/B}(z_b, b_0/b) \exp\left[\mathcal{S}_{ij}(b, Q)\right]$ with $S_{ij}(b,Q) = -\int_{b_2^2/b^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\ln\left(\frac{Q^2}{\bar{\mu}^2}\right) A_i(\alpha_S(\bar{\mu}^2)) + B_i(\alpha_S(\bar{\mu}^2)) \right]$ Functions $\mathcal{F} = A, B, \mathcal{C}$ have perturbative expansion $\mathcal{F} = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{F}^{(n)}$ Known coefficients (NLL): $A_i^{(1)} = C_i$ $C_i = C_{F/A}$ for i = q/g $A_i^{(2)} = \frac{1}{2}C_i K$ $K = C_A \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{10}{9}T_R N_F$ $B_a^{(1)} = -\frac{3}{2}C_F \qquad B_q^{(1)} = -\frac{1}{6}(11C_A - 4T_RN_f)$

[Kodaira, Trentadue '82] [Catani, D'Emilio, Trentadue '88]

Also known NNLL coefficients $B_i^{(2)}, A_i^{(3)}$

[Davies, Stirling'84] [de Florian, Grazzini'00] [Moch, Vermaseren, Vogt'04]

Small p_{T} : resummation

W/Z production at the Tevatron: theory vs data (CDF)

[A.K., Stirling'01]

Small p_{T} : resummation

Resummation involves integration of the running coupling over the Landau pole: Integration over *b* from 0 to $\infty \Rightarrow \alpha_s(1/b)$ large when $b \to 1/\Lambda$

: non-perturbative effects

 \Rightarrow introduce an additional function $F^{NP}(Q, b, x_A, x_B)$ in the integrand to suppress the Sudakov factor

$$\exp(\mathcal{S}(b,Q)) \to \exp(\mathcal{S}(b,Q))F^{NP}(Q,b,x_A,x_B)$$
$$F^{NP}(Q,b,x_A,x_B) = e^{-g(Q,b,x_A,x_B)b^2}$$

[Collins, Soper, Sterman'85]

determined from fits to Drell-Yan/Z data

⇒Ambiguity in definition of perturbative series: pdf's and the Sudakov factor defined at

$$b_* = \frac{b}{\sqrt{1 + (b/b_{\lim})^2}}$$
 $b_* < b_{\lim}$

Other ways to avoid the Landau pole

- return to p_{T} -space [Ellis, Veseli'97] [A.K., Stirling'99-'01]

deforming *b*-integration into contour over the complex *b*-plane [*Laenen, Sterman, Vogelsang'00*] [*A.K., Sterman, Vogelsang'02*] [*Bozzi, Catani, de Florian, Grazzini'05*]

smooth extrapolation of the perturbative result to large b region [Qiu, Zhang'01]

WIZ production at the LHC

[Berge, Nadolsky, Olness, Yuan'05]

W/Z production at the LHC

Recent proposal:

$$F^{NP} \to F^{NP} e^{-(\rho(x_a) + \rho(x_b))b^2}$$

with

$$\rho(x) = c_0 \sqrt{\frac{1}{x^2} + \frac{1}{x_0^2}} - \frac{1}{x_0}$$
 $c_0 \sim 0.013$
 $x_0 \sim 0.005$

$$ho(x)\sim rac{c_0}{x}$$
 for $x\ll x_0$

- Motivated by SIDIS data description requires broadening of this form (Theoretical motivation: BFKL-like $log(\frac{1}{x})$ terms)
- For the Tevatron: change in M_W
 - **•** by 10-20 MeV in the central region |y| < 1
 - **•** by 50 MeV in the forward region |y| > 1
- More analysis needed: coming soon [Dasgupta et al.'06]

W/Z production at the LHC

Effect of the quark masses (c, b) on the resummed distributions for W, Z at the LHC [*Berge et al.*^{'05}]

 $I = M_T^{e\nu}$ method of determining M_W - not sensitive

 p_T^e method - shift up to 10 MeV

Joint resummation

Threshold logarithms $z=Q^2/\hat{s}$

$$\hat{\sigma}(z) = \alpha_S \left[c_{11}^z \mathcal{D}_1(z) + c_{10}^z \mathcal{D}_0 + c_{1\delta}^z \,\delta(1-z) + c_1^z \right] \\ + \alpha_S^2 \left[c_{23}^z \,\mathcal{D}_3(z) + \dots \right] \\ \mathcal{D}_i(z) = \left(\frac{\ln^i (1-z)}{1-z} \right)_+$$

Threshold resummation in Mellin moment N space, $\log(1-z) \leftrightarrow \log N$

Joint resummation

Threshold logarithms $z=Q^2/\hat{s}$

$$\hat{\sigma}(z) = \alpha_S \left[c_{11}^z \mathcal{D}_1(z) + c_{10}^z \mathcal{D}_0 + c_{1\delta}^z \,\delta(1-z) + c_1^z \right] \\ + \alpha_S^2 \left[c_{23}^z \,\mathcal{D}_3(z) + \dots \right] \\ \mathcal{D}_i(z) = \left(\frac{\ln^i (1-z)}{1-z} \right)_+$$

Threshold resummation in Mellin moment N space, $\log(1-z) \leftrightarrow \log N$

Possible to resum both recoil and threshold logarithms within one formalism

[Laenen, Sterman, Vogelsang'00]

$$\mathcal{S}(N,b,Q) = -\int_{Q^2/\chi^2}^{Q^2} \frac{dk_T^2}{k_T^2} \left[A_i(\alpha_S(k_T)) \ln\left(\frac{Q^2}{k_T^2}\right) + B_i(\alpha_S(k_T)) \right]$$
 with $\chi = \chi(b,N)$

In the limit $b \gg N$ recoil resummation recovered

 $N \gg 1$ (b = 0) threshold resummation recovered

Joint resummation

CDF data [Affolder et al.'00] compared to joint resummation prediction on Z production

[A.K., Sterman, Vogelsang'02]

 \Rightarrow threshold effects modest

Higgs production via gluon fusion at the LHC

Resummation and unintegrated pdfs

Higgs production via gluon fusion at the LHC

[Gawron, Kwieciński'03]

$$\frac{d\sigma}{dQ^2 dy dp_{\rm T}^2} = \frac{\sigma_0 Q^2}{\tau s} \pi \delta(Q^2 - M^2) \int \frac{d^2 \mathbf{k_1} d^2 \mathbf{k_2}}{\pi^2} f_g(x_1, k_1, Q) f_g(x_2, k_2, Q) \delta^{(2)}(\mathbf{k_1} + \mathbf{k_2} - \mathbf{p_T}) dQ^2 dy dp_{\rm T}^2$$

- $f(x, k_T, Q)$ obtained through numerical solution of the (approximated) CCFM equations
- Sourcespondance to the CSS resummed formulae shown at the level of $A^{(1)}$, $B^{(1)}$
- Subleading (remaining NLL, NNLL) effects not included
- similar analysis for W production [Kwieciński, Szczurek'03]

Large $p_{\rm T}$: fixed order

 $G_{ij}^{(1)}$

 $rac{d\sigma}{dp_{\mathrm{T}}^2}$

Threshold corrections: here for Higgs production via gluon fusion

$$\frac{d\hat{\sigma}_{ij}}{dp_T^2 dy_H} = \frac{\sigma_0}{\hat{s}} \left[\frac{\alpha_S}{2\pi} G_{ij}^{(1)} + \left(\frac{\alpha_S}{2\pi} \right)^2 G_{ij}^{(2)} + \dots \right]$$
, $G_{ij}^{(2)}$ known [Glosser, Schmidt'02]
is a function of the variable \hat{y}_T [de Florian, A.K., Vogelsang'05]
 $\hat{y}_T = \frac{p_T + m_T}{\sqrt{\hat{s}}} \qquad m_T = \sqrt{m_H^2 + p_T^2}$

 \rightarrow measures distance from partonic threshold for production of a massive particle (m_H) with transverse momentum p_T

 $\hat{y}_T = 1$ partonic threshold

$$\begin{aligned} G_{ij}^{(1)} &\to \frac{d\hat{\sigma}_{ab}^{(1)}}{dp_T^2} = \sigma_0 \frac{\alpha_S}{2\pi} \frac{\mathcal{N}_{ab}(\hat{y}_T, p_T)}{p_T^2 \sqrt{1 - \hat{y}_T^2}} & \mathcal{N}_{ab}(\hat{y}_T, p_T) \text{ regular function of } \hat{y}_T \\ G_{ij}^{(2)} &\to \frac{d\hat{\sigma}_{ab}^{(2)}}{dp_T^2} = \frac{\alpha_S}{2\pi} \frac{d\hat{\sigma}_{ab}^{(1)}}{dp_T^2} \left[g_2(p_T) \ln^2(1 - \hat{y}_T^2) + g_1(p_T) \ln(1 - \hat{y}_T^2) + g_0(p_T) \right] + f(p_T, \hat{y}_T) \end{aligned}$$

 $f(p_T, \hat{y}_T)$: terms vanishing in the limit $\hat{y}_T \rightarrow 1$

Large logarithmic corrections in threshold regime $\hat{y}_T \rightarrow 1$

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T \rightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T \rightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]
- \square Logarithmically enhanced contributions; at kth order of perturbation theory

$$\alpha_S^k \ln^m (1 - \hat{y}_T^2) \qquad m \le 2k$$

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T \rightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]
- Logarithmically enhanced contributions; at kth order of perturbation theory

$$\alpha_S^k \ln^m (1 - \hat{y}_T^2) \qquad m \le 2k$$

Solution For given p_T , \hat{y}_T large when \hat{s} small \Rightarrow steep rise of pdfs towards small argument increases relevance of the threshold regime

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T
 ightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]
- Logarithmically enhanced contributions; at kth order of perturbation theory

$$\alpha_S^k \ln^m (1 - \hat{y}_T^2) \qquad m \le 2k$$

- For given p_T , \hat{y}_T large when \hat{s} small \Rightarrow steep rise of pdfs towards small argument increases relevance of the threshold regime
- In the limit $\hat{y}_T \rightarrow 1$ proper treatment of higher order corrections requires all-order resummation

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T
 ightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]
- Logarithmically enhanced contributions; at kth order of perturbation theory

$$\alpha_S^k \ln^m (1 - \hat{y}_T^2) \qquad m \le 2k$$

- Solution For given p_T , \hat{y}_T large when \hat{s} small \Rightarrow steep rise of pdfs towards small argument increases relevance of the threshold regime
- In the limit $\hat{y}_T \rightarrow 1$ proper treatment of higher order corrections requires all-order resummation
- Sinematical resemblance to high- p_T prompt photon production (massless \leftrightarrow massive particle): resummation approach established [*Catani, Mangano, Nason'98*]

- **Solution** Large logarithmic corrections in threshold regime $\hat{y}_T
 ightarrow 1$
- Soft-virtual approximation based on setting $f(p_T, \hat{y}_T) = 0$ gives bulk of the NLO correction [*Smith, van Neerven'05*]
- Logarithmically enhanced contributions; at kth order of perturbation theory

$$\alpha_S^k \ln^m (1 - \hat{y}_T^2) \qquad m \le 2k$$

- Solution For given p_T , \hat{y}_T large when \hat{s} small \Rightarrow steep rise of pdfs towards small argument increases relevance of the threshold regime
- In the limit $\hat{y}_T \rightarrow 1$ proper treatment of higher order corrections requires all-order resummation
- Kinematical resemblance to high- p_T prompt photon production (massless \leftrightarrow massive particle): resummation approach established [*Catani, Mangano, Nason'98*]
- Resummation takes place in the Mellin (N) moment space

Large p_{T} : Higgs p_{T} distribution at the LHC

NLL resummation matched to NLO fixed-order result

2.5 $M_{\rm H} = 125 {\rm GeV}$ MRST-2004 $\mu^2 = (M_{\rm H}^2 + p_{\rm T}^2)$ $\mathbf{K}^{NLL/LO} = \frac{d\sigma^{NLL}/dp_T}{d\sigma^{LO}/dp_T}$ Κ $K^{NLL/LO}$ 2.0 $\mathbf{K}^{NLO/LO} = \frac{d\sigma^{NLO}/dp_T}{d\sigma^{LO}/dp_T}$ K^{NLO/LO} 1.5 K^{NLL/NLO} 1.0 $\mathbf{K}^{NLL/NLO} = \frac{d\sigma^{NLL}/dp_T}{d\sigma^{NLO}/dp_T}$ 100 150 200 250 300 р_т

10% correction in the considered $p_{\rm T}$ range

Reduced scale dependence for the resummed result

[de Florian, AK, Vogelsang'05]

EW corrections: naively expected to be small

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

NLO(EW) ~ NNLO(QCD)

EW corrections: naively expected to be small

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

NLO(EW) ~ NNLO(QCD)

Typically, at $\sqrt{\hat{s}} \sim 1$ TeV, one-loop corrections of $\mathcal{O}(10\%)$

EW corrections: naively expected to be small

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

NLO(EW) ~ NNLO(QCD)

 $\alpha \log \left(\frac{\hat{s}}{M_{W}^{2}}\right)$ next-to-leading log (NLL)

Typically, at $\sqrt{\hat{s}} \sim 1$ TeV, one-loop corrections of $\mathcal{O}(10\%)$

Origin: soft/collinear emission of virtual massive gauge bosons (W, Z)

EW corrections: naively expected to be small

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

NLO(EW) ~ NNLO(QCD)

 $\begin{array}{ll} \mathcal{O}(\alpha) & : & \alpha \log^2 \left(\frac{\hat{s}}{M_W^2} \right) & \text{ leading log (LL)} \\ & \alpha \log \left(\frac{\hat{s}}{M_W^2} \right) & \text{ next-to-leading log (NLL)} \end{array}$

Typically, at $\sqrt{\hat{s}} \sim 1$ TeV, one-loop corrections of $\mathcal{O}(10\%)$

Real radiation possible to observe \implies no compensation of virtual emission by real radiation

EW corrections: naively expected to be small

$$\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$$

NLO(EW) ~ NNLO(QCD)

 $\begin{array}{ll} \mathcal{O}(\alpha) & \\ & \alpha \log^2 \left(\frac{\hat{s}}{M_W^2} \right) & \\ & \alpha \log \left(\frac{\hat{s}}{M_W^2} \right) & \\ & \\ & \text{next-to-leading log (NLL)} \end{array}$

Typically, at $\sqrt{\hat{s}} \sim 1$ TeV, one-loop corrections of $\mathcal{O}(10\%)$

Origin: soft/collinear emission of virtual *massive* gauge bosons (W, Z)

- Real radiation possible to observe \implies no compensation of virtual emission by real radiation
- Finite logarithmic corrections => different from massless gauge theories such as QCD or QED

Nucl. Phys. B727 (2005) 368, hep-ph/0508253

Analytic, compact expressions for $\mathcal{O}(\alpha)$ weak corrections

\Rightarrow ready to be put into a numerical code!

Nucl. Phys. B727 (2005) 368, hep-ph/0508253

- Analytic, compact expressions for $\mathcal{O}(\alpha)$ weak corrections
- Super-compact high-energy (NNLL) approximation of this result (permille accuracy)
- \Rightarrow ready to be put into a numerical code!

$$\mathcal{R}_{\rm NLO/LO}^{\rm had} = \frac{d\sigma_{\rm NLO}/dp_T}{d\sigma_{\rm LO}/dp_T} - 1$$

LO MRST2001 pdf's, $\alpha_s(M_Z) = 0.13$, $\mu_F = \mu_R = p_T$ \overline{MS} scheme, $\alpha(M_Z)=1/127.9$, $s_W{}^2 = 0.231$, $M_Z=91.19$ GeV, $M_W = c_W M_Z$, $m_t = 175$ GeV, $m_H = 130$ GeV

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{had}} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated $\Delta \sigma(p_{\rm T}^{\rm cut})$ vs. $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \text{BR}(Z \rightarrow l, \nu_l) \times \sigma_{\rm LO}$ $\text{BR}(Z \rightarrow l, \nu_l) = 30.6\%, \mathcal{L} = 300 \text{ fb}^{-1}$

LO MRST2001 pdf's, $\alpha_s(M_Z) = 0.13$, $\mu_F = \mu_R = p_T$ \overline{MS} scheme, $\alpha(M_Z)=1/127.9$, $s_W{}^2 = 0.231$, $M_Z=91.19$ GeV, $M_W = c_W M_Z$, $m_t = 175$ GeV, $m_H = 130$ GeV

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm had} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated $\Delta \sigma(p_{\rm T}^{\rm cut})$ vs. $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times {\rm BR}(Z \rightarrow l, \nu_l) \times \sigma_{\rm LO}$ ${\rm BR}(Z \rightarrow l, \nu_l) = 30.6\%, \mathcal{L} = 300 \,{\rm fb}^{-1}$

- Corrections negative; range from -13% at 500 GeV up to -37 % at 2 TeV
- Size of the integrated corrections much bigger than the statistical error!

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

LO MRST2001 pdf's, $\alpha_s(M_Z^2) = 0.13$, $\mu_F = \mu_R = p_T$ OS scheme, $\alpha(0) = 1/137$, $s_W^2 = 1 - M_W^2/M_Z^2$, $M_Z = 91.19$ GeV, $M_W = 80.39$ GeV

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{h}ad} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated $\Delta \sigma(p_{\rm T}^{\rm cut})$ vs. $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \sigma_{\rm LO}, \, \mathcal{L} = 300 \, \text{fb}^{-1}$

LO MRST2001 pdf's, $\alpha_s(M_Z^2) = 0.13$, $\mu_F = \mu_R = p_T$ OS scheme, $\alpha(0) = 1/137$, $s_W^2 = 1 - M_W^2/M_Z^2$, $M_Z = 91.19$ GeV, $M_W = 80.39$ GeV

$$\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{had}} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$$

Integrated $\Delta \sigma(p_{\rm T}^{\rm cut})$ vs. $\Delta \sigma_{\rm stat} = \frac{\sigma}{\sqrt{N}}$ $N = \mathcal{L} \times \sigma_{\rm LO}, \, \mathcal{L} = 300 \, \text{fb}^{-1}$

Corrections negative; range from -6% at 500 GeV up to -17 % at 2 TeV

Size of the integrated corrections much bigger than the statistical error!

NLL approximation

Phys. Lett. B 609 (2005) 277

- Solution Electroweak corrections in the high energy region: $|\hat{r}| \gg M_W^2 \sim M_Z^2$ for $\hat{r} = \hat{s}, \ \hat{t}, \ \hat{u}$
- **S** Corrections of $\mathcal{O}\left(\frac{M_W^2}{|\hat{r}|}\right)$ not considered
- Sorrections due to Z W ratio not considered

NLL approximation

Phys. Lett. B 609 (2005) 277

S Corrections of
$$\mathcal{O}\left(rac{M_W^2}{|\hat{r}|}
ight)$$
 not considered

- Corrections due to Z W ratio not considered
- \rightarrow Calculations based on results available in the literature:

1-loop

factorization and universality of 1-loop EW corrections at the LL and NLL level $\alpha \log^2 \left(\frac{|\hat{r}|}{M_W^2} \right), \alpha \log \left(\frac{\hat{s}}{M_W^2} \right)$ for arbitrary processes [*Denner, Pozzorini'01*] <u>2-loop</u> LL+NLL terms $\alpha^2 \log^4 \left(\frac{|\hat{r}|}{M_W^2} \right)$ from exponentiated 1-loop result [*Denner, Melles, Pozzorini'03*] + NLL terms $\alpha^2 \log^3 \left(\frac{\hat{s}}{M_W^2} \right)$ from general resummation formula [*Melles'02,'03*]

Large p_T Z-boson production at the LHC

Large p_T Z-boson production at the LHC

Large p_T Z-boson production at the LHC

NLL 2-loop terms positive, up to 8% contribution (at 2 TeV)

- 1-loop + 2-loop NLL amount to up to -30% correction (at 2 TeV)
- Solution For large range of p_T values 2-loop effects comparable with statistical error!

Large p_T photon production at the LHC

Large p_T photon production at the LHC

Large p_T photon production at the LHC

NLL 2-loop terms positive, up to 3% contribution (at 2 TeV)

- 1-loop + 2-loop NLL amount to up to -14% correction (at 2 TeV)
- Solution For large range of p_T values 2-loop effects comparable with statistical error!

Ratio of the p_T distributions: γ to Z

- Cancellation of theoretical uncertainties (pdf's, α_s)
- Stability wrt. QCD corrections
- Ratio of the LO distributions: $\frac{d\sigma^{\gamma}}{dp_{T}} / \frac{d\sigma^{Z}}{dp_{T}} \sim 0.7 0.8$
- Weak corrections modify the ratio; strongest effect at large p_T NLO: $\frac{d\sigma^{\gamma}}{dp_T} / \frac{d\sigma^Z}{dp_T} \sim 0.75 - 1$, NNLO: $\frac{d\sigma^{\gamma}}{dp_T} / \frac{d\sigma^Z}{dp_T} \sim 0.75 - 0.95$

Effects of real emission

[Baur, hep-ph/0611241]

- No real corrections for exclusive processes
- Effects from real weak boson emission for inclusive processes
- Similar Violation of Bloch-Norsieck theorem for non-abelian gauge theories \implies logarithmic terms survive
- Moderate effects at the LHC

Conclusions

- In the small $p_{\rm T}$ regime QCD resummation techniques are essential for reliable predictions of $p_{\rm T}$ distributions
- Many implementations of the CSS formalism developed (subleading logs, order of perturbative predictions to which resummed calculations are matched, *b*-integral evaluation)
- Solution Resummed predictions for $p_{\rm T}$ distribution for W/Z and Higgs production at the LHC available
- At higher p_T effects of threshold corrections relevant for for Higgs production; NLL resummation gives 10% correction to the NLO p_T distribution
- At high $p_{\rm T}$ EW corrections are large and must be included in predictions for vector boson $p_{\rm T}$ distribution at the LHC
- For p_T distribution of Z-bosons and direct photons
 - Analytic results for the full 1-loop $\mathcal{O}(\alpha)$ weak correction
 - NNLL aproximation of the NLO: compact expression, excellent approximation
 - NLL approximation: 1-loop and 2-loop corrections

Commercial break..

Approximate expressions at large
$$p_T$$
: limit $\frac{M_W^2}{\hat{s}} \rightarrow 0$

[Roth, Denner'96]

NNLL approximation = LL terms ~ $\alpha \log^2 \left(\frac{\hat{s}}{M_W^2}\right)$ + NLL terms ~ $\alpha \log \left(\frac{\hat{s}}{M_W^2}\right)$ + constant terms in this limit

$$H_1^{V,A/N}(M_{V'}^2) \stackrel{\text{NNLL}}{=} \text{Re}\left[g_0^{V,A/N}(M_{V'}^2)\frac{\hat{t}^2 + \hat{u}^2}{\hat{t}\hat{u}} + g_1^{V,A/N}(M_{V'}^2)\frac{\hat{t}^2 - \hat{u}^2}{\hat{t}\hat{u}} + g_2^{V,A/N}(M_{V'}^2)\right]$$

$$\begin{split} g_0^{V,A}(M_{V'}^2) &= -\log^2\left(\frac{-\hat{s}}{M_{V'}^2}\right) + 3\log\left(\frac{-\hat{s}}{M_{V'}^2}\right) + \frac{3}{2}\left[\log^2\left(\frac{\hat{t}}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right) + \log\left(\frac{\hat{t}}{\hat{s}}\right) + \log\left(\frac{\hat{u}}{\hat{s}}\right)\right] + \frac{7\pi^2}{3} - \frac{5}{2} \\ g_0^{V,N}(M_W^2) &= 2\left[2/(4-D) - \gamma_{\rm E} + \log\left(\frac{4\pi\mu^2}{M_Z^2}\right) - \delta_{V\gamma}\log\left(\frac{M_W^2}{M_Z^2}\right)\right] + \log^2\left(\frac{-\hat{s}}{M_W^2}\right) - \log^2\left(\frac{-\hat{t}}{M_W^2}\right) - \log^2\left(\frac{-\hat{u}}{M_W^2}\right) \\ &+ \log^2\left(\frac{\hat{t}}{\hat{u}}\right) - \frac{3}{2}\left[\log^2\left(\frac{\hat{t}}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right)\right] - 2\pi^2 + 2\delta_{VZ}\left(-\frac{\pi^2}{9} - \frac{\pi}{\sqrt{3}} + 2\right) \\ g_1^{V,N}(M_{V'}^2) &= -g_1^{V,A}(M_{V'}^2) + \frac{3}{2}\left[\log\left(\frac{\hat{u}}{\hat{s}}\right) - \log\left(\frac{\hat{t}}{\hat{s}}\right)\right] = \frac{1}{2}\left[\log^2\left(\frac{\hat{u}}{\hat{s}}\right) - \log^2\left(\frac{\hat{t}}{\hat{s}}\right)\right] \\ g_2^{V,N}(M_{V'}^2) &= -g_2^{V,A}(M_{V'}^2) = -2\left[\log^2\left(\frac{\hat{t}}{\hat{s}}\right) + \log^2\left(\frac{\hat{u}}{\hat{s}}\right) + \log\left(\frac{\hat{t}}{\hat{s}}\right) + \log\left(\frac{\hat{t}}{\hat{s}}\right)\right] - 4\pi^2 \\ g_i^{\gamma,A} = g_i^{Z,A} \text{ for } i = 0, 1, 2 \quad g_i^{\gamma,N} = g_i^{Z,N} \text{ for } j = 1, 2 \end{split}$$

Commercial break ctd.

$$\begin{split} \overline{\sum} |\mathcal{M}_{1}^{\bar{q}q}|^{2} &= 8\pi^{2} \alpha \alpha_{S} (N_{c}^{2}-1) \times \sum_{\lambda=\mathrm{R,L}} \left\{ \left(I_{q_{\lambda}}^{V} \right)^{2} \left[H_{0}^{V} \left(1+2\delta C_{q_{\lambda}}^{V,\mathrm{A}} \right) + \frac{\alpha}{2\pi} \sum_{V=\mathrm{Z,W}^{\pm}} \left(I^{V'} I^{\bar{V'}} \right)_{q_{\lambda}} H_{1}^{V,\mathrm{A}} (M_{V'}^{2}) \right] \right. \\ &+ \left. \frac{U_{VW^{3}}}{s_{W}} T_{q_{\lambda}}^{3} I_{q_{\lambda}}^{V} \left[2H_{0}^{V} \delta C_{q_{\lambda}}^{V,\mathrm{N}} + \frac{\alpha}{2\pi} \frac{1}{s_{W}^{2}} H_{1}^{\mathrm{N}} (M_{W}^{2}) \right] \right\} \\ &H_{1}^{\mathrm{A/N}} (M_{V}^{2}) = \mathrm{Re} \left[\sum_{j=0}^{14} K_{j}^{\mathrm{A/N}} (M_{V}^{2}) J_{j} (M_{V}^{2}) \right] \leftarrow \left(\begin{array}{c} \mathrm{independent of} \\ \mathrm{flavour and chirality} \end{array} \right) \end{split}$$

Commercial break ctd.

Large p_T Z-boson production at the LHC

LO MRST2001 pdf's, $\alpha_s(M_Z) = 0.13$, $\mu_F = \mu_R = p_T$ \overline{MS} scheme, $\alpha(M_Z)=1/127.9$, $s_W{}^2 = 0.231$, $M_Z=91.19$ GeV, $M_W = c_W M_Z$, $m_t = 175$ GeV, $m_H = 130$ GeV

Commercial break ctd.

 $\mathcal{R}_{\mathrm{NLO/LO}}^{\mathrm{had}} = \frac{d\sigma_{\mathrm{NLO}}/dp_T}{d\sigma_{\mathrm{LO}}/dp_T} - 1$ etc.

NLL approximation: percent (or better) level

- \sim 1% deviation from NLO at low p_T
- \sim 0.2% deviation from NLO at $p_T=2~{
 m TeV}$

NNLL approximation: permille level

Extra slides

Generic hard scattering process:

$$\hat{\sigma}(z) \sim \hat{\sigma}_0 \left[1 + \sum_{n=1}^{\infty} \int_0^1 dz_1 \dots dz_n \frac{d\omega_n(z_1, \dots, z_n)}{dz_1 \dots dz_n} \Theta_{PS}^{(n)}(z, z_1, \dots, z_n) \right]$$

* Dynamical factorization(universal, process independent)

QCD: gluon emission correlated (colour charge) but in the soft limit QED-like factorization [*Ermolaev, Fadin '81*] [*Bassetto, Ciafaloni, Marchesini '83*] $\frac{d\omega_n(z_1,...,z_n)}{dz_1...dz_n} = \frac{1}{n!} \prod_{i=1}^n \frac{d\omega(z_i)}{dz_i}.$

* Phase–space factorization depends on the process: Θ_{PS} contains kinematical constraints defining physical cross section $\Theta_{PS}^{(n)}(z, z_1, ..., z_n) = \prod_{i=1}^n \Theta_{PS}(z, z_i)$

$$\hat{\sigma}(z) \sim \hat{\sigma}_0 \left\{ 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \left[\int_0^1 dz_i \frac{d\omega(z_i)}{dz_i} \Theta_{PS}(z, z_i) \right]^n \right\} \sim \hat{\sigma}_0 \exp\left[\int_z^1 dz' \frac{d\omega(z')}{dz'} \Theta_{PS}(z, z_i) \right]^n \right\}$$
$$\sim \hat{\sigma}_0 \exp\left[\alpha_S L^2 + \dots \right]$$

Extra slides

 \Rightarrow In general, resummation follows from factorization

 $\begin{array}{l} (\textit{factorization} \Rightarrow \textit{evolution eq.} \Rightarrow \\ \textit{exponentiation}) \end{array}$

Schematically:

$$\sigma(N) = H(p_1/\mu, p_2/\mu, \zeta_i) S(Q/\mu N, \zeta_i) J_1(p_1\zeta_1/\mu, Q/\mu N) J_2(p_2\zeta_2/\mu, Q/\mu N) J_2(p_2$$

A. Kulesza, Transverse momentum distributions for SM bosons at the LHC - p. 33/3

Extra slides

* Inverse \bar{N} and b transforms – integrals along contours in (\bar{N}, b) complex space

A. Kulesza, Transverse momentum distributions for SM bosons at the LHC - p. 34/3