Diffraction at Tevatron and LHC

in the Miettinen-Pumplin model

Sebastian Sapeta

Institute of Physics Jagellonian University Cracow

Cracow Epiphany Conference, 8 January 2006

OUTLINE

- 1. Diffraction in proton-proton collisions
- 2. The Good Walker mechanism
- 3. The Miettinen Pumplin model
- 4. Predictions for diffractive cross section
- 5. Elastic and diffractive slopes
- 6. Predictions for LHC the total, elastic and diffractive cross sections
- 7. Summary

DIFFRACTION

Proton:

$$B\rangle = \sum_{k} C_k \mid \psi_k \rangle$$

Different eigenstates are absorbed by the target with different intensity - inelastic production of particles takes place

 $\text{Basis} \rightarrow \text{EIGENSTATES} \text{ OF DIFFRACTION}$

$$ImT \mid \psi_k \rangle = t_k \mid \psi_k \rangle$$

where

$$\langle \psi_i \mid \psi_j \rangle = \delta_{ij} \qquad \langle B \mid B \rangle = \sum_k |C_k|^2 = 1$$

The elastic amplitude - the AVERAGE over absorption coefficients

$$\langle B \mid ImT \mid B \rangle = \sum_{k} \mid C_{k} \mid^{2} t_{k} = \langle t \rangle$$

The total and the elastic cross section

$$\frac{d\sigma_{tot}}{d^2\vec{b}} = 2\langle t\rangle \qquad \frac{d\sigma_{el}}{d^2\vec{b}} = \langle t\rangle^2$$

The cross section for diffractive production - the **DISPERSION** of absorption coefficients

$$\frac{d\sigma_{diff}}{d^2\vec{b}} = \sum_k |\langle \psi_k | ImT | B \rangle|^2 - \frac{d\sigma_{el}}{d^2\vec{b}}$$
$$= \sum_k |C_k|^2 t_k^2 - (\sum_k |C_k|^2 t_k)^2 = \langle t^2 \rangle - \langle t \rangle^2$$

Diffractive states \rightarrow WEE PARTON STATES

$$\psi_k \rangle \equiv \mid \vec{b_1}, ..., \vec{b_N}, y_1, ..., y_N \rangle$$

hence

$$|B\rangle = \sum_{N=0}^{\infty} \int \prod_{i=1}^{N} d^2 \vec{b_i} dy_i C_N(\vec{b_1}, ..., \vec{b_N}, y_1, ..., y_N) |\vec{b_1}, ..., \vec{b_N} y_1, ..., y_N\rangle$$

 $N \rightarrow$ given by Poisson distribution with mean number G^2

$$C_N(\vec{b_1}, ..., \vec{b_N}, y_1, ..., y_N) \mid^2 = e^{-G^2} \frac{G^{2N}}{N!} \prod_{i=1}^N \mid C(\vec{b_i}, y_i) \mid^2$$

Partons in the projectile are uncorrelated

The probability of the parton state to interact

$$t_N(\vec{b_1}, ..., \vec{b_N}, y_1, ..., y_N) = 1 - \prod_{i=1}^N (1 - \tau_i(\vec{b_i}, y_i))$$

Partons interact independently with the target

Single wee parton probability distribution

$$|C(b,y)|^2 = \frac{1}{2\pi\beta\lambda} \exp\left(-\frac{|y|}{\lambda} - \frac{b^2}{\beta}\right)$$

Interaction probability of a single wee parton

$$\tau(b, y) = A \exp\left(-\frac{\mid y \mid}{\alpha} - \frac{b^2}{\gamma}\right)$$

In 1978 Miettinen and Pumplin performed calculations within their model for two colliding protons at $\sqrt{s} = 53 \,\text{GeV}$. The results were in very good agreement with experimental data.

THE MIETTINEN - PUMPLIN MODEL AT TEVATRON ENERGIES

Data	$\sqrt{s} \left[GeV ight]$	$\sigma_{tot} \ [mb]$	$\sigma_{el} \; [mb]$	G^2	$\beta [GeV^{-2}]$	$2\sigma_{diff} \ [mb]$
ISR	53	43	8.7	2.91	6.0	6.51
CDF	546	61.26	12.87	3.12	8.2	8.82
E811	1800	71.71	15.79	3.38	9.0	9.63
CDF	1800	80.03	19.70	4.20	8.6	8.87

Diffraction at Tevatron and LHC in the Miettinen-Pumplin model – p.10/15

Momentum transfer |t| dependent cross sections obtained by Fourier transform.

Parametrization for $|t| < 0.2 \text{ GeV}^2$

$$\frac{d\sigma}{dt} = \left. \frac{d\sigma}{dt} \right|_{t=0} e^{-B|t|}$$

Data sets	\sqrt{s}	B_{el}	Experiment
ISR	30.4	12.4	12.70 ± 0.50
ISR	52.6	12.6	13.03 ± 0.52
ISR	62.3	13.1	13.47 ± 0.52
CDF	546	14.8	15.28 ± 0.58
UA4	546	14.7	15.20 ± 0.20
E811	1800	16.9	16.98 ± 0.25
CDF	1800	17.1	16.99 ± 0.47

Data sets	\sqrt{s}	B_{diff}	Experiment
E710	1800	10.4	10.5 ± 1.8

(\sqrt{s} in GeV and $\mathsf{B}_{el}\text{, }\mathsf{B}_{diff}$ in GeV $^{-2}\text{)}$

EXTRAPOLATION OF THE PARAMETERS OF THE MODEL

The behaviour of the diffractive cross section at the Miettinen-Pumplin and the Goulianos models is qualitatively different

SUMMARY

- The Miettinen Pumplin despite its simplicity and ad hoc assumptions correctly describes diffractive production at Tevatron energies
- Good agreement of the calculated values of the slope parameters with experimental data makes the model trustworthy
- Extrapolation of the parameters of the model to the LHC energy results in the prediction for the total cross section 15% smaller than determined by Donnachie and Landshoff
- The Miettinen Pumplin model predicts almost constant diffractive cross section in the Tevatron–LHC energy range