Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Inelastic neutrino scattering Monte Carlo event generator

Jarostaw Nowak

Jarostaw Nowak

Institute of Theoretical Physics Wrocław University

Cracow Epiphany Conference on Neutrino and Dark Matter 08/01/2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタぐ

Jarosław Nowak

Physical models

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents Comparison with data

Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Motivation

Why a new Event generator?

- the original motivation: to improve NUX+FLUKA scheme (no resonance production)
- a new treatment of the resonance region
 - \blacktriangleright only Δ resonance: nuclear effects should smear out other resonances
 - average treatment of them should be sufficient -Quark-Hadron duality
- a tool to investigate nuclear effects (e.g spectral function, nuclear potential)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Quasi-elastic charge current scattering

Quasielastic scattering:

 $\nu_{\mu} + n \to \mu^{-} + p$ $\bar{\nu}_{\mu} + p \to \mu^{+} + n$

Quasi-elastic strange particle production

Inelastic neutrino scattering

Jarosław Nowak

Physical models

Quasi-elastic scattering

 Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Δ resonance excitation

Four Δ charge states: $\Delta^{++}\text{, }\Delta^{+}\text{, }\Delta^{0}\text{, }\Delta^{-}$

Charge Current

$$\begin{array}{ll} \nu_{\mu} + p \to \mu^{-} + p + \pi^{+} & \bar{\nu}_{\mu} + p \to \mu^{+} + p + \pi^{-} \\ \nu_{\mu} + n \to \mu^{-} + n + \pi^{+} & \bar{\nu}_{\mu} + p \to \mu^{+} + n + \pi^{0} \\ \nu_{\mu} + n \to \mu^{-} + p + \pi^{0} & \bar{\nu}_{\mu} + n \to \mu^{+} + n + \pi^{-} \end{array}$$

Physical mode

Quasi-elastic scattering

 Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Deep Inelastic scattering

Deep inelastic scattering (DIS)

$$\nu + n \rightarrow \mu^{-} + X^{+}$$

$$\nu + p \rightarrow \mu^{-} + X^{++}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \end{array}$

Deep inelastic scattering

Scattering on nucleon constituents

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Fragmentation algorithm

Cross section for scattering on quark q_i (valance or sea quark)

$$\frac{d^2 \sigma^{\nu q_i \to \mu q_j}}{dW d\nu} \sim q_i K_i$$

 K_i kinematic factor for quark q_i

Probability of scattering on parton

Probability of reaction on a quark is given as follows

$$P(q_i) = \frac{\frac{d\sigma^{q_i}(E)}{dWd\nu}}{\sum_i \frac{d\sigma^{q_i}(E)}{dWd\nu}}$$

Scattering on proton

In case of CC neutrino scattering on proton cross section is a sum of contribution from quark d, quark s, and anti-quark u

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \end{array}$

Scattering on nucleon constituents

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

- * ロ * * @ * * 注 * * 注 * うへの

Inelastic neutrino scattering Jarosław Nowak

Scattering on given quark

Illustration of the scattering on parton inside nucleon for CC interaction (fragmentation \rightarrow PYTHIA6)

Physical models

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering

Scattering on nucleon constituents

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

・ロト・日本・日本・日本・日本・日本

Reconstruction of final state

Charged hadrons multiplicity for $\nu p \rightarrow \mu^- X^{++}$

 $P(n_{ch}) = rac{\sigma(n_{ch})}{\sum\limits\limits_{n_{ch}} \sigma(n_{ch})}$ (D. Zieminska et al. Phys. Rev. D27, 47(1983))

Single pion function vs. resonances elasticity

Single pion function can be compared with elasticity of resonances: $\Gamma(N\pi)/\Gamma_{total}$

Inelastic neutrino scattering

Jarosław Nowak

Physical model

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents

Comparison with data

Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲圖▶ ▲□▶

Δ excitation and spp channel of DIS

Smooth transition from Δ excitation to DIS single pion channel

Transition form RES to DIS with respect to hadronic invariant mass W ∈ (1.3, 1.6GeV).
It is a smooth transition, but it is not linear as a function of invariant mass.

 \bullet Non-resonant background is a small admixture of DIS single pion channel in Δ region.

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data

Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

・ロト・「聞・・問・・問・・日・

Charge Current cross section $\nu N \rightarrow \mu^- X$

ANL: Barish 1976 PL B66,291, Barish 1979 PR D19,2521 (Hydrogen, Deuterium); BEBC: Bosetti 1977 PL B70,273, Colley 1979 ZP C2,187, Bosetti 1982 PL B110,167, Parker 1984 NP B232,1 (Neon-H2); BNL: Baltay 1980 PRL 44,916 (Ne-H2), Baker 1982 PR D25,617 (Deuterium); CCFR: MacFarlane 1984 ZP C26,1, Berge 1987 ZP C35,443, Auchincloss 1990 ZP C48,411, Seligman 1996 Nevis Report 292 (Iron)

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

▲ロト ▲理 ト ▲目 ト ▲目 ト ▲ 回 ト

Charge Current cross section $\bar{\nu}N \rightarrow \mu^+ X$

BEBC: Bosetti 1977 PL B70,273, Colley 1979 ZP C2,187, Bosetti 1982 PL B110,167 (Neon-H2); CCFR: Auchincloss 1990 ZP C48,411, Seligman 1996 Nevis Report 292 (Iron); CDHS: Berge 1987 ZP C35,443 (Iron); CHARM:Jonker 1981 PL B99,265, Allaby 1988 ZP C38,403 (Marble); FNAL: Taylor 1983 PRL 51,739, Asratyan 1984 PL 137B,122 (Neon-Hydrogen); ITEP: Vovenko 1980 SJNP 30,527 (Iron); JINR: Anikeev 1996 ZP C70,39 (Aluminium) Inelastic neutrino scattering

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

▲ロト ▲理 ト ▲目 ト ▲目 ト ▲ 回 ト

Inelastic neutrino scattering

Charge Current cross section $\nu p \rightarrow \mu^- \pi^+ p$

ANL: Radecky 1982 PR D25,1161, Campbell 1973 PRL 30,335, Barish 1979 PR D19,2521 (Hydrogen,Deuterium); BEBC: Allen 1986 NP B264,221 (Hydrogen), Allasia 1990 NP B343,285 (Deuterium); BNL: Kitagaki 1986 PR D34,2554 (Deuterium); FNAL: Bell 1978 PRL 41,1008 (Hydrogen); SKAT: Grabosch 1989 ZP C41,527 (Heavy Freon-CF3BR)

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Inelastic neutrino scattering

Charge Current cross section $\nu n \rightarrow \mu^- \pi^+ n$

ANL: Radecky 1982 PR D25,1161, Barish 1979 PR D19,2521 (Hydrogen,Deuterium); BNL: Kitagaki 1986 PR D34,2554 (Deuterium); SKAT: Grabosch 1989 ZP C41,527 (Heavy Freon-CF3BR)

Jarosław Nowak

Physical model

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents Comparison with data

Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Inelastic neutrino scattering

Charge Current cross section $\nu n \rightarrow \mu^- \pi^0 p$

ANL: Radecky 1982 PR D25,1161, Barish 1979 PR D19,2521 (Hydrogen,Deuterium); BNL: Kitagaki 1986 PR D34,2554 (Deuterium); SKAT: Grabosch 1989 ZP C41,527 (Heavy Freon-CF3BR)

Jarosław Nowak

Physical model

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents Comparison with data

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Neutral Current SPP cross section

Jarosław Nowak

Physical model

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents Comparison with data

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Differential cross section as a function of W

Inelastic neutrino scattering

Jarosław Nowak

Physical model

 $\begin{array}{l} \mbox{Quasi-elastic scattering} \\ \Delta \mbox{ resonance excitation} \\ \mbox{Deep inelastic scattering} \\ \mbox{Scattering on nucleon} \\ \mbox{constituents} \end{array}$

Comparison with data Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Jarosław Nowak

Physical model

Quasi-elastic scattering Δ resonance excitation Deep inelastic scattering Scattering on nucleon constituents Comparison with data

Combining Δ excitation and spp channel of DIS

Results

CC neutrino scattering NC neutrino scattering

Conclusions

Conclusions

- The event generator for deep inelastic scattering works in agreement with data
- ► The mechanism of combining ∆ excitation with DIS single pion production gives results with nice agreement with data

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()