Interpretation of the EGRET Excess in Diffuse Galactic Gamma Rays as a Dark Matter Annihilation Signal Indirect Search for Dark Matter

Christian Sander

Institut für Experimentelle Kernphysik, Universität Karlsruhe

5th - 7th January 2006 - Cracow Epiphany Conference on Neutrinos and Dark Matter

▲ ■ ▶ ▲ ■ ▶

Outline

Problems:

- Rotation curves of galaxies
- Matter content of the universe
- Excess in diffuse γ rays above 1 GeV

Solution:

- Dark Matter halo around our galaxy ...
- ... consisting of WIMPs ...
- ... which can annihilate into quarks and give rise to high energetic γ rays from π^0 -decays

ヘロト ヘアト ヘビト ヘビト

Dark Matter Rotation Curves Diffuse Gamma Rays

Dark Matter

Energy/Matter Content of the Universe

- Combination of CMB data with Hubble expansion data from SNIa
- $m \circ \sim 27\%$ matter but only $\sim 4\%$ baryonic matter
- $\sim 1\%$ luminous matter
- \Rightarrow existence of baryonic and non baryonic DM

Dark Matter Rotation Curves Diffuse Gamma Rays

Dark Matter

Hot Dark Matter Candidates (HDM)

Neutrinos

 \Rightarrow not more than 10% to 15% of Ω_{DM}

Cold Dark Matter Candidates (CDM)

- Massive neutrinos
- Primordial black holes
- Axions
- Weakly Interacting Massive Particles (WIMPs)
- \Rightarrow WIMPs are very promising CDM candidates

イロト イポト イヨト イヨト

Dark Matter Rotation Curves Diffuse Gamma Rays

Dark Matter

Why are WIMPs promising?

- Assumption: DM in thermal equilibrium with early universe
- Approximative solution of the Boltzmann equation:

$$\Omega_{\chi} h^{2} = \frac{m_{\chi} n_{\chi}}{\rho_{c}} \approx \left(\frac{3 \cdot 10^{-27} \text{ cm}^{3} \text{ s}^{-1}}{\langle \sigma v \rangle} \right)$$

$$\Rightarrow \text{ cross sections of weak}$$
interaction

→ Ξ → < Ξ →</p>

э

Dark Matter Rotation Curves Diffuse Gamma Rays

Rotation Curves of Galaxies

Observation vs. Expectation

- Expectation from Kepler's law: $v \propto 1/\sqrt{r}$ for $r \gg r_{disk}$
- Observation: $v \approx const$
- Possible explanation: existence of extended halo of DM

-∢ ≣ →

Dark Matter Rotation Curves Diffuse Gamma Rays

Rotation Curves of Galaxies

Determination of *r* Dependence

$$F_Z = F_G$$

$$m \cdot v^2/r = G \cdot m \cdot M(r)/r^2$$

$$\Rightarrow v = G \cdot \sqrt{M(r)/r}$$

$$v \stackrel{!}{=} const$$

$$\Rightarrow M(r) \propto r$$

$$\int \rho \, dV \propto \int \rho(r)r^2 \, dr$$

$$\Rightarrow \rho(r) \propto 1/r^2$$

ヘロト 人間 ト ヘヨト ヘヨト

Dark Matter Rotation Curves Diffuse Gamma Rays

Diffuse Galactic Gamma Rays

EGRET Experiment

- Installed on CGRO satellite (together with BATSE, OSSE and COMPTEL)
- Measuring from 1991 to 2000
- Energy range from \sim 30 MeV to \sim 100 GeV
- Third EGRET catalog: 271 point sources
- Complete data point sources = diffuse gamma rays

・ロト ・回ト ・ヨト ・ヨト

Dark Matter Rotation Curves Diffuse Gamma Rays

Diffuse Galactic Gamma Rays

EGRET Excess

- Comparison with galactic models
 ⇒ Excess above 1 GeV
- Excess observed in every sky direction
- Uncertainty of background or new contribution?

Spectrum from the Galactic center:

< ∃ >

Dark Matter Rotation Curves Diffuse Gamma Rays

Diffuse Galactic Gamma Rays

Excess in Different Directions

Spectral shape of excess is independent of sky region \Rightarrow 2 possibilities

- Uncertainty of background
- New contribution, e.g. DMA

region	/[°]	b [°]	description
A	330-30	0-5	inner galaxy
В	30-330	0-5	galactic plane avoiding A
C	90-270	0-10	outer galaxy
D	0-360	10-20	intermediate latitudes 1
E	0-360	20-60	intermediate latitudes 2
F	0-360	60-90	galactic poles

Spectrum from different regions:

-∢ ≣ ▶

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Galactic Background of Diffuse Gamma Rays

Contributions

- Decay of neutral π^0 s produced in *pp* reactions of CR with interstellar gas $p + p \rightarrow \pi^0 + X \rightarrow \gamma\gamma + X$
- Bremsstrahlung $\mathbf{e} + \mathbf{p} \rightarrow \mathbf{e}' + \mathbf{p}' + \gamma$
- Inverse Compton $\mathbf{e} + \gamma \rightarrow \mathbf{e}' + \gamma'$

Spectrum from the Galactic center:

イロト イポト イヨト イヨト

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Galactic Background of Diffuse Gamma Rays

Dominant Contribution

- π^0 peak
- Shape determined by energy spectrum of CR protons
- CR proton spectrum measured locally by balloon experiments

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Galactic Background of Diffuse Gamma Rays

Ingredients of Propagation

- Source spectrum
- Source distribution
- Energy losses
- Diffusion
- Convection
- Radioactive decay
- Interaction with interstellar gas

• . . .

Calculation of bgs with GalProp

Moskalenko et al. astro-ph/9906228

Energy loss times for nucleons \approx age of universe:

イロト イポト イヨト イヨト

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Galactic Background of Diffuse Gamma Rays

Conventional model

Local *p* and *e* spectrum representative

Optimized model

Local *p* and *e* spectrum not representative

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Galactic Background of Diffuse Gamma Rays

Uncertainty of Solar Modulation

- High energies: energy dependence γ_{high} is fixed (\approx 2.7)
- Low energies: uncertainty of γ_{low} can be compensated by solar modulation
- CM: $\gamma_{\text{low}} \approx 2.0 \Rightarrow \Phi_{\text{SM}} \approx 650 \text{ MV}$
- $\gamma_{\text{low}} \approx 1.8 \Rightarrow \Phi_{\text{SM}} \approx 450 \text{ MV}$
- $\gamma_{\text{low}} \approx 2.2 \Rightarrow \Phi_{\text{SM}} \approx 900 \text{ MV}$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Dark Matter Annihilation

If WIMPs ...

- ... are Majorana particles
 ⇒ WIMPs can annihilate
- ... were in equilibrium with the early universe
 - \Rightarrow Today WIMPs are almost at rest
- ...annihilate at rest
 - \Rightarrow a pair of monoenergetic SM particles

イロト イポト イヨト イヨト

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Dark Matter Annihilation

Spectral Shape of DMA Signal ...

- Fragmentation and/or decay of Annihilation products $\Rightarrow \pi^0 s$
 - \Rightarrow \sim 30...40 γ s per annihilation
- Different γ spectrum than background (continuous CR spectrum)
 - \Rightarrow better fit to EGRET spectrum?
- Spectral shape similar for different annihilation processes

 $Calculation \ of \ signal \ with \ {\tt DarkSusy}$

Gondolo et al. astro-ph/0406204

Gamma spectra for different processes:

★ 프 ► ★ 프 ►

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Fit to EGRET Spectrum with DMA signal

Fit Spectral Shape Only

- Uncertainties in interstellar gas density
 - $\Rightarrow \text{bg scaling}$
- Uncertainties in DM density
 - \Rightarrow signal scaling (boost factor)
- Free bg and signal scaling

 \Rightarrow use point to point error \sim 7% (full error \sim 15%)

くロト (過) (目) (日)

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Fit to EGRET Spectrum with CM and DMA signal

Christian Sander

Indirect Search for Dark Matter

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Fit to EGRET Spectrum with OM and DMA signal

Christian Sander

Indirect Search for Dark Matter

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Limits on WIMP Mass

Conventional Model

- $\Sigma \chi^2$ of 6 Regions of the Sky
- Scan over WIMP mass $\Rightarrow m_{WIMP} \lesssim$ 70 GeV (95% C.L.)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Limits on WIMP Mass

Optimized Model

- $\Sigma \chi^2$ of 6 Regions of the Sky
- Scan over WIMP mass $\Rightarrow m_{WIMP} \lesssim 100 \text{ GeV} (95\% \text{ C.L.})$

イロト イポト イヨト イヨト

э

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Extragalactic Background

Important bg at large Galactic latitudes (low Galactic bg)

Method of EGB Determination

- Choose one energy
- Divide skymap in regions of high and low flux
- Draw observed vs. expected flux
- y-axis intercept is EGB of chosen energy

→

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Extragalactic Background

Modified Method of EGB Determination

• Use region dependent bg scaling

Sreekumar et al. astro-ph/9709257

 Add DMA signal to prediction (new)

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Extragalactic Background

Comparison of different Methods

- Bg scaling leads to significantly larger EGB
- All methods show a bump in the GeV range

Galactic Background Dark Matter Annihilation Limits on WIMP Mass Extragalactic Background

Extragalactic Background

Extragalactic DMA contribution

- Fit of new EGB with double power law and DMA signal ($\chi^2/d.o.f.=2.45/5 \Rightarrow 78\%$)
- Fit with single power law ($\chi^2/d.o.f.=8.2/8 \Rightarrow 42\%$)

Christian Sander Indirect Search for Dark Matter

Determination of Halo Parameters Rotation Curve

Determination of Halo Parameters

Directional Dependence of Excess

- Signal in sky region Ψ : $\Phi_{\mathsf{DM}} \propto \langle \sigma \boldsymbol{v} \rangle \cdot \frac{1}{\Delta \Omega} \int d\Omega \int dI_{\psi} \left(\frac{\rho(I_{\psi})}{m_{\chi}} \right)^2$
- Smooth $1/r^2$ profile yields not enough signal \Rightarrow clumps
- Assume same enhancement by clumps in all directions

Determination of Halo Parameters Rotation Curve

Determination of Halo Parameters

Method

- Divide skymap into 180 independent sky directions
 ⇒ 45 intervals for gal. longitude
 (dlong = 8°)
 ⇒ 4 intervals for gal. latitude
 (|lat| <5°, 5° < |lat| <10°,
 10° < |lat| <20° and 20° < |lat|)
- Divide gamma spectrum in low and high (<>0.5 GeV) energy region
- Use low energy region for bg normalization
- Use high energy region for determination of halo parameters

Indirect Search for Dark Matter

Determination of Halo Parameters Rotation Curve

Determination of Halo Parameters

Isothermal Profile Without Rings

Triaxial profile with $1/r^2$ dependence at large r and core at center

- Good agreement at large latitudes
- Too little flux in galactic plane

Christian Sander

Indirect Search for Dark Matter

Determination of Halo Parameters Rotation Curve

Determination of Halo Parameters

Isothermal Profile With Rings

lux [cm⁻² s⁻¹sr

Additional DM in galactic plane parametrized by two toroidal ringlike structures

background

0.5 GeV

Lonaitude

5" k |at| < 10

signal

- Inner ring at ~ 4 kpc; ~ thickness of lum. disk (e.g. adiabatic compression)
- Outer ring at ~ 14 kpc; much thicker than disk (e.g. infall of dwarf galaxy)

/26,9/36

x² (bg only): 601,4/37

inner ring

cuter ring

 $20^{\circ} < |lat|$

イロト イポト イヨト イヨト

Determination of Halo Parameters Rotation Curve

Visualization of Halo Profile

Dark Matter:

Determination of Halo Parameters Rotation Curve

Determination of Halo Parameters

Experimental Counterpart of Rings

• Inner ring:

$$\label{eq:Minner} \begin{split} M_{inner} &\sim 9\cdot 10^9 M_\odot \approx 0.3\% \text{ of } M_{tot} \\ \text{coincides with maximum of } H_2 \text{ distribution} \\ \text{Hunter et al. Astrophys. J. 481} \ (1997) \ 205 \end{split}$$

• Outer ring:

$$\begin{split} M_{outer} &\sim 8 \cdot 10^{10} M_\odot \approx 3\% \text{ of } M_{tot} \\ \text{correlated with ghostly ring of stars at} \sim 14 \text{ kpc} \ (10^8 \dots 10^9 \ M_\odot) \\ \text{Ibata et al. (astro-ph/0301067)} \end{split}$$

Massive substructures influence rotation curve of milky way

ヘロト 人間 とくほとくほとう

Determination of Halo Parameters Rotation Curve

Rotation Curve of the Milky Way

Calculation

•
$$\frac{m \cdot v^2}{r} = m \cdot \frac{d\Phi}{dr}$$

- Excentricity of halo and rings \Rightarrow no symmetry can be used to calculate Φ
- Solution of Poisson equation $\Delta \Phi = -4\pi G \cdot \rho$ by Greens function
- Ringlike structures will contribute to v² with negative sign inside the ring
- Calculated rotation curve has to be compatible with Milky Way

ヘロト ヘ戸ト ヘヨト ヘヨト

Determination of Halo Parameters Rotation Curve

Rotation Curve of the Milky Way

Comparison with Measured Rotation Curve

- Data are averaged from three surveys with different tracers
- Rings of DM can explain change of slope at \sim 10 kpc

without rings:

with rings:

Christian Sander Indirect Search for Dark Matter

Determination of Halo Parameters Rotation Curve

Summary

- EGRET excess can be explained as Dark Matter annihilation of WIMPs in a mass range between 50 and 100 GeV
- Extragalactic Background has been determined including bg scaling and a possible DM contribution of the galactic flux
- Section 1 Section 3 From the directional dependence of the excess a *possible* halo profile can be determined ⇒ halo profile needs ringlike structures, which are correlated with observations
- Oetermined halo profile is compatible with rotation curve of the Milky Way
- **③** *not shown:* EGRET data are compatible with DM consisting of supersymmetric neutralinos ⇒ together with constraints from EWSB, Higgs mass, $Br(b \rightarrow X_s \gamma)$ and a_μ only a small region of SUSY parameter space is left over (hep-ph/0511154)

イロト イポト イヨト イヨト