"Conditions for detecting CP violation via neutrinoless double beta decay"

Alicja Joniec, Marek Zralek

ajoniec@us.edu.pl

Division Of Field Theory And Elementary Particle Physics University of Silesia

Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 1/29

Outline

- Motivation
- $(\beta\beta)_{0\nu}$ general information.
- How can we determinate Majorana phases from $(\beta\beta)_{0\nu}$?
- Conditions for detecting CP violation via $(\beta\beta)_{0\nu}$ present situation.
- Conditions for detecting CP violation via $(\beta\beta)_{0\nu}$ future.
- Conclusions.

Motivation

- $(\beta\beta)_{0\nu}$ gives us possibility for studying the fundamental properties of neutrinos beyond the standard electroweak theory ($\Delta L = 2$).
- Studies of $(\beta\beta)_{0\nu}$ play a crucial role by probing:
 - the Majorana nature of neutrinos,
 - the neutrino mass spectrum,
 - the absolute ν -mass scale,
 - the Majorana CP phases.

CP violation in neutrino oscillations

The charged current neutrino state (ν_{α}) is related to mass states (ν_i) by an unitary transformation

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle,$$

where

'Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 4/29

CP violation in neutrino oscillations

• Dirac neutrinos: A very small or vanishing CP breaking signal due to fact that $\sin \theta_{13}$ and $e^{\pm i\delta}$ always appear in a combination. From the present fits: $\sin^2 \theta_{13} < 0.05$ for 99.7% C.L.

(A. Bandyopadhyay et al., Phys.Lett. **B581**,62, 2004).

 Majorana neutrinos: Majorana phases do not affect neutrino oscillations.

Neutrinoless double beta decay

- A nuclear process changing the nuclear charge Z by two units while leaving the atomic mass A unchanged.
- It is allowed when neutrino and antyneutrino are identical particles.

'Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 6/29

The half-life of $(\beta\beta)_{0\nu}$ decay is given by the expression:

$$\left[T_{1/2}^{0\nu}(A,Z)\right]^{-1} = |\langle m_{\nu} \rangle|^2 |M^{0\nu}(A,Z)|^2 G^{0\nu}(E_0,Z)|^2$$

- $\langle m_{\nu} \rangle = |\sum_{i=1}^{3} U_{ei}^{2} m_{i}|$ the effective Majorana mass,
- $M^{0\nu}(A, Z)$ nuclear matrix element (NME) determined only by nuclear properties, doesn't depend on neutrino masses and mixing,
- $G^{0\nu}(E_0, Z)$ phase-space factor.

Nuclear matrix element

- Calculation of the NME is a complicated nuclear problem:
 - many intermediate nuclear states must be taken into account,
 - two approaches, which are based on different physical assumptions, are usually used for the calculation of NME: Nuclear Shell Model (NSM) and Quasiparticle Random Phase Approximation (QRPA),
 - different calculations of the same NME differ by factor 2-3 or even more,
- The new calculation, where the observed $(\beta\beta)_{2\nu}$ decay has been used to fix relevant parameters, has shown the great stability of the final results.

(V. Rodin et al. Phys. Rev. C 68, 044302, Conditions for detecting CP violation via $(\beta\beta_{0\mu})^{*}$ – p. 8/29

Neutrinoless double beta decay

- The possible precision of the future experiments will give a chance to look for CP violation only for higher neutrino masses $(m_1 \gtrsim 0.1 \ eV)$, where the mass spectrum starts to be degenerated $m_1 \approx m_2 \approx m_3 = m_{\nu}$.
- In this case the effective neutrino mass m_{β} measured in tritium beta decay is just equal to neutrino masses $m_{\beta} = \left[\sum_{i=1}^{3} |U_{ei}|^2 m_i^2\right]^{1/2} = m_{\nu}.$
- We can combine both measurements to find values of CP violating phases.

Neutrinoless double beta decay & beta decay

Picture from: *Neutrinoless double beta decay and direct searches for neutrino mass*, hep-ph:0412300.

"Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 10/29

Conditions for CP symmetry conservation

- For Majorana neutrinos CP symmetry holds if $\alpha_i, \delta \in \{0, \pm \frac{\pi}{2}, \pm \pi\}.$
- Then four conserving CP values of $\langle m_{\nu} \rangle$ can be obtained:

$$\langle m_{\nu} \rangle_{(1)} = m_{\beta}, \langle m_{\nu} \rangle_{(2)} = m_{\beta} \cos 2\theta_{13}, \langle m_{\nu} \rangle_{(3)} = m_{\beta} \left(\cos^2 \theta_{13} | \cos 2\theta_{12} | + \sin^2 \theta_{13} \right), \langle m_{\nu} \rangle_{(4)} = m_{\beta} \left(\cos^2 \theta_{13} | \cos 2\theta_{12} | - \sin^2 \theta_{13} \right).$$

Conditions for CP symmetry conservation

• In all cases, the relation between $\langle m_{\nu} \rangle$ and m_{β} is linear: $\langle m_{\nu} \rangle_{(i)} = c_i m_{\beta}$.

• Let us assume that θ_{ij} mixing angles are known with definite precision:

 $\sin^2 \theta_{ij} \in ((\sin^2 \theta_{ij})_{min}, (\sin^2 \theta_{ij})_{max})$

with central value $(\sin^2 \theta_{ij})_{best fit}$.

• For each c_i (i = 2, 3, 4) we can calculate the maximal and minimal values c_i^{max}, c_i^{min} .

Visual method

A localization of the $(c_i^{min} c_i^{max})$ regions for the present θ_{13} and θ_{12} angles precision.

'Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 13/29

Visual method

- Let assume that in the future experiments m_β and $\langle m_\nu \rangle$ masses are determined with precision Δm_β and $\Delta \langle m_\nu \rangle$.
- Localization of the rectangle $R = (\Delta m_{\beta}, \Delta \langle m_{\nu} \rangle)$ between the lines $c_1 = 1$ and c_4^{min} decides about CP symmetry breaking.
- If the rectangle R is fully located between two lines with the c_3^{max} and c_2^{min} slopes then CP symmetry is broken.

So, the first conditions for detecting CP violation are:

 $\Delta m_{\beta} < \langle m_{\nu} \rangle C - \Delta \langle m_{\nu} \rangle D,$ $\Delta \langle m_{\nu} \rangle < (m_{\beta}) A - (\Delta m_{\beta}) B.$

where

$$A = c_2^{min} - c_3^{max},$$

$$B = \frac{c_2^{min} + c_3^{max}}{2},$$

$$C = \frac{A}{c_2^{min} c_3^{max}},$$

$$D = \frac{B}{c_2^{min} c_3^{max}}.$$

"Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 15/29

If this conditions are satisfied for some central values $(m_{\beta})_{exp}$ and $\langle m_{\nu} \rangle_{exp}$ then there are further two possibilities. The rectangle *R* located in the point $((m_{\beta})_{exp}, \langle m_{\nu} \rangle_{exp})$ can be:

- fully inside two bounding lines c_2^{min} and c_3^{max} ,
- located partly on the first or the second line.
- In the first case we can conclude that CP symmetry is broken, in the second the problem is unresolved.

If we translate the first point into equations we have:

$$c_3^{max}\left((m_\beta)_{exp} + \frac{\Delta m_\beta}{2}\right) < \left(\langle m_\nu \rangle_{exp} - \frac{\Delta \langle m_\nu \rangle}{2}\right)$$

and

$$\left(\langle m_{\nu}\rangle_{exp} + \frac{\Delta\langle m_{\nu}\rangle}{2}\right) < \left((m_{\beta})_{exp} - \frac{\Delta m_{\beta}}{2}\right)c_2^{min}.$$

These all inequalities form the set of necessary conditions for CP symmetry breaking.

If we now parameterize

$$\Delta \langle m_{\nu} \rangle = 2x \langle m_{\nu} \rangle, \quad \Delta m_{\beta} = 2y \, m_{\beta},$$

- 2x the relative error which measures the uncertainty coming from theoretical calculations of nuclear matrix elements and experimental measurements of $(\beta\beta)_{0\nu}$ decay lifetime,
- 2y measures the relative error of the effective mass e.g. from tritium beta decay.

Taking account all conditions we find that both x and y must satisfy the same inequality:

$$x, y \le \frac{1 - \cos 2\theta_{12\,\min} - 3\sin^2 \theta_{13\,\max} + \sin^2 \theta_{13\,\min} \cos 2\theta_{12\,\min}}{1 + \cos 2\theta_{12\,\min} - \sin^2 \theta_{13\,\max} - \sin^2 \theta_{13\,\min} \cos 2\theta_{12\,\min}}.$$

The best circumstances to find CP violation arise for

•
$$\sin^2 \theta_{13} \rightarrow 0 \ (x \rightarrow \tan^2 \theta_{12})$$

•
$$\sin^2 \theta_{12} \rightarrow \frac{1}{2}$$
.

That is opposite situation than in case of finding Dirac phase, when the $\sin^2 \theta_{13}$ ruins possibility to measure it.

From the same inequalities, for given relative errors x and Δm_{β} , we can also find the lower limit for the m_{β} and $\langle m_{\nu} \rangle$ effective masses for which measurements are still possible

$$\langle m_{\nu} \rangle > \frac{\Delta m_{\beta}}{C - 2xD}$$

and

$$m_{\beta} > \frac{\Delta m_{\beta}}{A} \left(B + \frac{2x}{C - 2xD} \right).$$

Using θ_{12} and θ_{13} mixing angles recently determined

(see e.g.: John N. Bahcall et al. hep-ph/0406294)

with 3σ precision:

 $0.22 \leqslant \sin^2 \theta_{12} \leqslant 0.37, \qquad 0 \leqslant \sin^2 2\theta_{13} \leqslant 0.048$

we obtain:

x < 0.2.

It will be a serious challenge to get such a precision.

"Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 21/29

Now we can check it for the isotope of Germanium ⁷⁶Ge where evidence for the (ββ)_{0ν} decay is claimed to have been obtained

(H. V. Klapdor-Kleingrothaus et al., Phys. Lett. B586, 198-212, (2004)).

 Even assuming that precision of this measurement is much better than it is:

$$x_T = \frac{\Delta T({}^{76}Ge)}{2\langle T({}^{76}Ge)\rangle} \le 0.3,$$

and taking the new method of calculation of the NME into account, we get $x \sim 0.24$ which is still above the present necessary precision (x < 0.2).

More careful analysis, taking into account the present precision of the mixing angle determination can give regions of relative errors $\frac{\Delta m_{\nu}}{m_{\nu}}$ and $\frac{\Delta m_{\beta}}{m_{\beta}}$ for which CP violation could be seen with various CL.

Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 23/29

Let us assume that during next years:

- the precision of experiments will be strongly improved,
- the best values of mixing angles will not change

 $\sin^2 \theta_{12} \approx 0.28 \pm 0.01 \qquad \sin^2 \theta_{13} = 0.005 \pm 0.0001,$

• weak lensing of galaxies by large scale structure together with CMB data measure the sum of neutrino masses $\sum = m_1 + m_2 + m_3$ to an uncertainty of $0.04 \ eV$. So we can expect that each individual mass is known with the precision $\Delta m_\beta = 0.015 \ eV$.

Now the required precision of Δm_{β} and $\Delta \langle m_{\nu} \rangle$ is

x, y < 0.36.

This precision will be obtained if relative experimental error for $T(^{76}Ge)$ is

$$x_T = \frac{\Delta T(^{76}Ge)}{2\langle T(^{76}Ge)\rangle} \le 0.5,$$

which is not a pure fantasy.

Future

Regions of relative errors $\frac{\Delta m_{\nu}}{m_{\nu}}$ and $\frac{\Delta m_{\beta}}{m_{\beta}}$ for which CP violation could be seen in future.

"Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 26/29

Future - regions of $\langle m_{\nu} \rangle$ **and** m_{β}

"Conditions for detecting CP violation via $(\beta\beta_{0\mu})$ " – p. 27/29

From presented estimations it follows that measurement of CP violation for Majorana neutrinos in neutrinoless double beta decay could be possible for almost degenerate spectrum of their masses ($m_\beta > 0.1$ eV). However, several conditions should be satisfied:

- Oscillation mixing angles should be measured with better precision e.g. $\Delta(\sin \theta_{13} \approx 0.01)$ and $\Delta(\sin \theta_{12} \approx 0.1)$ which are within the future experimental range,
- Absolute neutrino masses m_{β} should be measured with precision $\Delta m_{\beta} \approx 0.02$ eV with the central value in the range $m_{\beta} > 0.15$ eV, which is also not a fully fantastic dream,

Conclusions

- Neutrinoless double beta decay is discovered and the decay lifetime *T* is measured with precision better than 10%,
- Nuclear matrix elements of decaying isotopes are calculated with much better precision,
- There should be independent information about a full mechanism of the $(\beta\beta)_{0\nu}$ decay. Any other mechanism should give negligible contribution to the neutrinoless electrons production.