Recent BABAR results on hadron spectroscopy

Enrico Robutti INFN Genova

Cracow Epiphany Conference January 8, 2005

Outline

• Charmed strange mesons

- $D_{sJ}^{*}(2317)^{+}, D_{sJ}(2460)^{+}$ production in continuum
- $D_{sJ}^{*}(2317)^{+}, D_{sJ}(2460)^{+}$ production in *B* decays
- Search for $D_{sl}^{*}(2632)^{+}$ in continuum production

• Charmonium

- Study of X(3872)

• Pentaquarks

- Inclusive searches
- Searches in B decays

Data samples

Krakow Epiphany 2005

- Two new cs states:
 D_{s/}*(2317)⁺, D_{s/}(2460)⁺
 - well established (confirmed by several experiments);
 - quantum numbers consistent with Pwave;
- Still things to understand:
 - mass lower than expected;
 - narrow width;
 - isospin-violating decays: $D_{sJ}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0},$ $D_{sJ}(2460)^{+} \rightarrow D_{s}^{*}(2112)^{+}\pi^{0},$

 $D_{sl}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0}$ in continuum $e^{+}e^{-}$

$D_{s/}(2460)^+ \rightarrow D_{s}^+(\pi^0)\gamma$ in continuum

$D_{s/}(2460)^+ \rightarrow D_s^+ \pi^+ \pi^-$ in continuum

$$\frac{\mathcal{B}(D_{sj}(2460)^+ \to D_s^+\gamma)}{\mathcal{B}(D_{sj}(2460)^+ \to D_s^+\pi^0\gamma)} = 0.375 \pm 0.054 \pm 0.057$$
$$\frac{\mathcal{B}(D_{sj}(2460)^+ \to D_s^+\pi^+\pi^-)}{\mathcal{B}(D_{sj}(2460)^+ \to D_s^+\pi^0\gamma)} = 0.082 \pm 0.018 \pm 0.01$$

hep-ex/0408067 125 fb⁻¹

$B \rightarrow D^{(*)}D_{sl}^{(*)+}$: branching fractions

<i>B</i> mode		Yield	Cross-feed	Efficiency (10^{-4})	$\mathcal{B}(10^{-3})$	Significance
$B^0 \to D^*_{sJ}(2317)^+ D^-$	$[D_{s}^{+}\pi^{0}]$	$34.7\pm$ 8.0	0.3	1.6	$1.8 \pm 0.4 \pm 0.3^{+0.6}_{-0.4}$	5.5
$B^+ \rightarrow D^*_{sJ}(2317)^+ \overline{D}^0$	$[D_{s}^{+}\pi^{0}]$	32.7 ± 10.8	0.3	2.6	$1.0\pm0.3\pm0.1^{+0.4}_{-0.2}$	3.1
$B^0 \to D_{sJ}(2460)^+ D^-$	$[D_s^{*+}\pi^0]$	17.4 ± 5.1	0.1	0.5	$2.8 \pm 0.8 \pm 0.5^{+1.0}_{-0.6}$	4.2
0	1 0					
$B^+ \rightarrow D_{sJ}(2460)^+ D^0$	$[D_s^{*+}\pi^0]$	29.0 ± 6.8	2.2	0.8	$2.7 \pm 0.7 \pm 0.5^{+0.9}_{-0.6}$	5.1
					10.0	
$B^0 \to D_{sJ}(2460)^+ D^-$	$[D_s^+\gamma]$	24.8 ± 6.5	0.5	2.6	$0.8 \pm 0.2 \pm 0.1^{+0.3}_{-0.2}$	5.0
$B^+ \rightarrow D_{sJ}(2460)^+ D^0$	$[D_s^+\gamma]$	31.9 ± 9.0	1.4	4.1	$0.6 \pm 0.2 \pm 0.1^{+0.2}_{-0.1}$	4.3

- Modes with \overline{D}^* previously unobserved

- Branching fractions about an order of magnitude smaller than for $B \rightarrow \overline{D} D_s$ with scalar D_s

Phys. Rev. Lett. 93:181801 113 fb⁻¹

$D_{sl}(2460)^+$ quantum numbers

10

- Study of helicity state of $D_{sl}(2460)^+$:
 - helicity angle defined as angle between B and D_s in D_{sl} rest frame;
 - use low-statistics, low-background $B \rightarrow D_{sl}(2460)^+D$, $D_{sl}(2460)^+ \rightarrow D_s^+ \gamma$ modes;
 - extract yields in separate bins of $\cos(\theta_h)$

hep-ex/0408041

113 fb⁻¹

The SELEX $D_{sl}^{*}(2632)^{+}$ state

• SELEX has claimed observation of a new D_s state at 2632 MeV/ c^2 , observed to decay to $D_s^+ \eta$ and $D^0 K^+$

11

Search for $D_{sl}^{*}(2632)^{+} \rightarrow D_{s}^{+}\eta$

Search for $D_{sl}^{*}(2632)^{+} \rightarrow D^{0}K^{+}$

Krakow Epiphany 2005

Search for $D_{sl}^{*}(2632)^{+} \rightarrow D^{*+}K_{S}$

The X(3872) state

• First observed by Belle in the $m(//\psi \pi^+\pi^-)$ spectrum in

Search for $X^-(3870)$ in $B \rightarrow X^- K$

- If X(3872) $\rightarrow J/\psi \rho^0$, then X might be iso-vector and have a charged partner
 - If $I_{X(3872)} = I$ and I conserved in B decays $\Rightarrow \mathcal{B}(B \rightarrow X^- K) \sim 2 \times \mathcal{B}(B \rightarrow X^- K);$
 - search performed in charged and neutral *B* modes: no enhancement seen in $m(J/\psi \pi^{-}\pi^{0})$: iso-vector hypothesis disfavoured with < 1/600 probability

Pentaquark candidates

- Observation reported of several narrow states with unconventional quark content:
 - Θ_5^+ : > 10 claims; observed in $m(n K^+), m(p K_S^0); m = (1542 \pm 5) \text{ MeV}/c^2; \Gamma < 8 \text{ MeV};$
 - Ξ_5^{--} : seen by NA49 in $m(\Xi^- \pi^-)$ (also Ξ^0 partner); $m = (1862 \pm 2) \text{ MeV}/c^2$; $\Gamma < 18 \text{ MeV}$;
 - Θ_{5c}^{0} : seen by HI in $m(D^{*-}p)$; $m = (3099 \pm 3 \pm 5) \text{ MeV}/c^2$; $\Gamma < 28 \text{ MeV}$;
 - can be arranged in multiplets just like ordinary baryons

Inclusive search for $\Theta_5^+ \rightarrow p K_S$

Search for $\Xi_5^- \rightarrow \Xi^- \pi^-, \Xi_5^0 \rightarrow \Xi^- \pi^+$ (I)

- Completely reconstruct Ξ^- candidates in decay chain $\Xi^- \rightarrow \Lambda^0 \pi^-$, $\Lambda^0 \rightarrow p \pi^-$
- $\Lambda^{\circ} \rightarrow \rho \pi$ Cut on invariant masses
 Require displaced vertexes
 Pair with like-sign or opposite-sign pion: require minimal aperture angle $\theta_{\Xi\pi}$ $\pi_{\Xi^{--}}$

E.Robutti

IP

Search for $\Xi_5^- \rightarrow \Xi^- \pi^-$, $\Xi_5^0 \rightarrow \Xi^- \pi^+$ (II)

Upper limits for Θ_5^+ and Ξ_5^- production

- Yield extracted in separate bins of p^* for two width hypotheses: $\Gamma = I \text{ MeV}, \Gamma = 8 \text{ MeV}$ for Θ_5^+ ; $\Gamma = I \text{ MeV}, \Gamma = 18 \text{ MeV}$ for Ξ_5^-

hep-ex/0408064 123 fb⁻¹

- All values consistent with null yield \Rightarrow upper limits (95% CL) extracted, assuming $\mathcal{B}(\Theta_5^+ \rightarrow p \ K^0_S) = 25\%;$ $\mathcal{B}(\Xi_r^- \rightarrow \Xi^- \pi^-) = 50\%$

21

Comparison with baryon production rates

- Rates for baryon production in e⁺e⁻ interaction decrease exponentially as a function of the baryon mass
 - If pentaquark should follow this trend we should expect: $\sim 8 \times 10^{-4} \Theta_5^+$ /event; $\sim 4 \times 10^{-5} \Xi_5^-$ /event.
 - Measured upper limits are about a factor 8 and 4 below, respectively

Other inclusive pentaquark searches

23

• Other searches performed in inclusive ΛK , ΣK invariant mass spectra:

$$- N_5^+ \rightarrow \Lambda^0 K^+, \Xi_5^- \rightarrow \Lambda^0 K^-, \Xi_5^0 \rightarrow \Lambda^0 K^0_{S;}$$

– also $m(\Sigma^0 K^+), m(\Sigma^0 K^-), m(\Sigma^0 K^0_S)$

E.Robutti

No unexpected peak found

Krakow Epiphany 2005

Search for Θ_5^{*++} in $B^+ \rightarrow \overline{p} (p K^+)$

• $B \rightarrow \overline{p} p K$ decay observed by Belle, confirmed by BABAR

Charmed pentaquarks in $B^0 \rightarrow (\overline{D}^{(*)}p)\overline{p}(\pi)$

- $B^0 \rightarrow \overline{D}^{*-} p \overline{p} \pi^+$ decay observed by CLEO, $B^0 \rightarrow \overline{D}^0 p \overline{p}, B^0 \rightarrow \overline{D}^{*0} p \overline{p}$ observed by Belle:
- hep-ex/0408035 113 fb⁻¹
- reconstruct them in BABAR: $B^0 \rightarrow D^- p \overline{p} \pi^-$ also observed for the first time;
- look for possible structures in all $D^{(*)}(\overline{p})$ invariant mass spectra (8 combinations): heavy charmed baryons or charmed pentaquarks

Summary

- $D_{sl}^{*}(2317)^{+}$ and $D_{sl}^{(2460)^{+}}$ well established experimentally
 - study of quantum numbers and other properties in progress in inclusive and B-decays anlayses
- No evidence found for SELEX $D_{sl}^{*}(2632)^{+}$
- Confirmation of X(3872) in B decays
 - nature of this state still unclear (charmonium? $D\overline{D}^*$ molecule?): further studies in progress
- No evidence found for recent pentaquark candidates
 - null results for extensive searches of antidecuplet members in high statistics e^+e^- samples
 - no evidence so far for charmed pentaquark production in *B* decays