The Radiative Return at Φ - and B-Meson Factories J.H. KÜHN, TTP, KARLSRUHE

- Basic Idea
- II Monte Carlo Generators: Status & Perspectives
- III Charge Asymmetry and Radiative Φ -Decays
- **IV** Nucleon Form Factors at B-Factories
- V Pion and Kaon Form Factors at large Q^2 and $au o
 u K^- K^0$
- **VI** Conclusions

(with H. Czyż, A. Grzelinska, E. Nowak, G. Rodrigo)

BASIC IDEA

photon radiated off the initial e^+e^- (ISR) reduces the effective energy of the collision $d\sigma(e^+e^- \rightarrow {
m hadrons} + \gamma) = H(Q^2, \theta_\gamma) \ d\sigma(e^+e^- \rightarrow {
m hadrons})$

measurement of R(s) over the full range of energies, from threshold up to √s
 large luminosities of factories compensate α/π from photon radiation
 radiative corrections essential (NLO)
 advantage over energy scan (BES, CMD2, SND): systematics (e.g. normalization) only once

High precision measurement of the hadronic cross-section at DA Φ NE, CLEO-C, B-factories

DA Φ **NE versus B-factories:**

configurations in the cms - frame

(two step process: $e^+e^-
ightarrow \gamma
ho(
ightarrow \gamma \pi \pi) \Rightarrow$ see below)

Rough estimates for rates:

 $\pi^{+} \pi^{-} \gamma : E_{\gamma} > 100 MeV$ $\frac{\sqrt{s} [GeV] \int \mathcal{L} [fb^{-1}] \text{ #events, } \theta_{min} = 7^{\circ}}{1.02 \quad 1.35 \quad 16 \cdot 10^{6}}$ $10.6 \quad 100 \quad 3.5 \cdot 10^{6}$

multi-hadron-events (R \equiv 2) $\sqrt{s} = 10.6~GeV$

Q^2 -interval $[GeV]$	$\#$ events, $ heta_{min}=7^{\circ}$
$[\ 1.5\ ,\ 2.0\]$	$9.9 \cdot 10^5$
$[\ 2.0\ ,\ 2.5\]$	$7.9 \cdot 10^5$
$[\ 2.5\ ,\ 3.0\]$	$6.6 \cdot 10^5$
$[\ 3.0\ ,\ 3.5\]$	$5.8 \cdot 10^5$

Lowest order

$$\frac{d\sigma}{dQ^2} \left(e^+ e^- \to \gamma + \operatorname{had}(Q^2) \right) = \sigma \left(e^+ e^- \to \operatorname{had}(Q^2) \right)$$

$$\times \frac{\alpha}{\pi s} \left\{ \begin{array}{c} \frac{s^2 + Q^4}{s(s - Q^2)} \left(\log(s/m_e^2) - 1 \right), \text{ no angular cut} \\ \frac{s^2 + Q^4}{s(s - Q^2)} \log \left(\frac{1 + \cos \theta_{min}}{1 - \cos \theta_{min}} \right) - \frac{s - Q^2}{s} \cos \theta_{min} \end{array} \right\}$$

$$\Rightarrow \text{ differential luminosity:} \quad \frac{dL}{dQ^2} \left(Q^2, s \right) = \frac{\alpha}{\pi s} \left\{ \cdots \right\} L(\text{at } s)$$

Basic Ingredients for Pion Formfactor

► ISR

overestimated)

additional radiation: collinear (EVA MC) (Binner, JK, Melnikov) or NLO calculation (PHOKHARA MC)

e

II MONTE CARLO GENERATORS

P H OTONS FROM KARLSRUHE H ADRONICALLY R ADIATED

References etc. \rightarrow http://cern.ch/german.rodrigo/phokhara

PHOKHARA 3.0

- ▶ specifically developed for $\pi^+\pi^-$ (plus photons)
- allows for simultaneous emission of photons from initial and final state, including virtual corrections (interference neglected).

⇒ dominated by "two step process": $e^+e^- \rightarrow \gamma \ \rho \ (\rightarrow \gamma \ \pi \pi)$ ⇒ importance of $\pi \pi \gamma$ as input for a_{μ}

Large effect for $Q^2 < m_{ ho}^2\,$ eliminated by suitable cuts on $\pi^+\pi^-$ configuration (suppress 2γ events)

or measure photon

Experimental Perspectives

KLOE pion form factor

BABAR, BELLE higher Q^2 available

 \Rightarrow measurement of R(Q^2) from threshold up to at least 5 GeV.

Examples:

PHOKHARA 4.0

- $\mu^+\mu^-\gamma$ with FSR at NLO
- vacuum polarisation can be switched on
- nucleon pair production included

III Charge Asymmetries and Radiative Φ -Decays

(H. Czyż, A. Grzelinska, JK, hep-ph/0412239)

- $\Rightarrow \text{ interference odd} \\ \text{ under } \pi^+ \leftrightarrow \pi^-$
- ⇒ asymmetric differential distribution: \int interf. = 0

$$A(heta) = rac{N^{\pi^+}(heta) - N^{\pi^-}(heta)}{N^{\pi^+}(heta) + N^{\pi^-}(heta)}$$

additional contribution on top of Φ -resonance (KLOE !) $e^+e^- \rightarrow \Phi \rightarrow \gamma f_{0,2} (\rightarrow \pi^+\pi^-)$ interference !

Significant influence of scalar resonances on charge asymmetry

 \Rightarrow amplitude for $\Phi
ightarrow \gamma \pi \pi$

IV NUCLEON FORM FACTORS

(with Czyż, Nowak, Rodrigo, hep-ph/0403062)

$$Q^2\gtrsim 4m_N^2$$
 accessible at B-factories \Rightarrow study $e^+e^- o \gamma\,Nar{N}$ (with $N=p$ or $n)$

hadronic current:

$$egin{aligned} J_{\mu} &= -ie \cdot ar{u}(q_2) \left(egin{aligned} F_1^N(Q^2) \, \gamma_{\mu} - rac{F_2^N(Q^2)}{4m_N} \, [\gamma_{\mu},
otin]
ight) v(q_1) \, , \ Q &= q_1 + q_2 \, , \quad q = (q_1 - q_2)/2 \end{aligned}$$

or

$$G_M = F_1 + F_2\,, \ \ \ G_E = F_1 + rac{Q^2}{4m^2}\,F_2$$

Result:

$$d\sigma = rac{1}{2s} L_{\mu
u} H^{\mu
u} \, d\Phi_2(p_1+p_2;Q,k) \, d\Phi_2(Q;q_1,q_2) rac{dQ^2}{2\pi},$$

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \bigg\{ \bigg(|G_M^N|^2 - \frac{1}{\tau} |G_E^N|^2 \bigg) \\ &\times \frac{32s}{\beta_N^2(s-Q^2)} \bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \bigg(\frac{(p_1 \cdot q)^2 + (p_2 \cdot q)^2}{s^2} \bigg) \\ &+ 2 \bigg(|G_M^N|^2 + \frac{1}{\tau} |G_E^N|^2 \bigg) \bigg[\bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \frac{(s^2 + Q^4)}{s(s-Q^2)} - 2 \bigg] \bigg\} \,, \end{split}$$

where

$$y_{1,2} = rac{s-Q^2}{2s} (1 \mp \cos heta_\gamma) \,, \ \ au = rac{Q^2}{4m_N^2} \,, \ \ eta_N^2 = 1 - rac{4m_N^2}{Q^2}$$

Separation of $|G_M|^2$ and $|G_E|^2$ through angular distribution:

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \frac{(1+\cos^2\theta_{\gamma})}{(1-\cos^2\theta_{\gamma})} \\ &\times 4\left(|{\pmb G}_M^{\pmb N}|^2 \left(1+\cos^2\hat\theta\right) + \frac{1}{\tau} |{\pmb G}_E^{\pmb N}|^2 \,\sin^2\hat\theta\right) \end{split}$$

 $\hat{ heta} = ext{angle of nucleon with respect to } \gamma ext{-direction in hadronic rest frame} \ \left(ext{valid for } s/Q^2 \ll 1, ext{ corrections and "optimal frame"} o ext{hep-ph/0403062}
ight)$

Similarity to $e^+e^-
ightarrow Nar{N}$:

$$rac{d\sigma}{d\Omega} = rac{lpha^2eta_N}{4Q^2}\left(|m{G}_M^{m{N}}|^2\left(1+\cos^2 heta
ight)+rac{1}{ au}\,|m{G}_E^{m{N}}|^2\,\sin^2 heta
ight)$$

Implementation on basis of model for form factor:

 $e^+e^- o par p$

 $e^+e^-
ightarrow p \bar p \, \gamma$ implementation in PHOKHARA

Angular distributions of nucleon

lab frame

hadronic rest frame

(two choices for G_M/G_E)

Comments

- similar results for neutron pair production
- NLO corrections from ISR included (corrections $\sim 1-2\%$)
- no FSR

thousands of events around 4–5 GeV^2 several events up to 7–8 GeV^2

V MESON FORM FACTORS at LARGE Q^2

(with Bruch, Khodjamirian, hep-ph/0409080)

radiative return will explore large Q^2

convenient representation for F_{π} :

generalized VDM with ho, ho', \ldots

combined with Veneziano-type tower of resonances (Dominguez)

$$egin{aligned} m{F}_{\pi}(s) &= \sum_{n=0}^{\infty} c_n rac{m_n^2}{m_n^2 - s}\,, \ c_n &= rac{(-1)^n \Gamma(eta - 1/2)}{\sqrt{\pi} (rac{1}{2} + n) \Gamma(n+1) \Gamma(eta - 1 - n)}\,, \ m_n^2 &= m_
ho^2(1+2n)\,, \ m{eta} &= ext{free parameter} \end{aligned}$$

Modifications:

- finite widths
- parameters of ho, ho', ho'' fitted to data
- Breit-Wigner for ρ , ρ' , ρ'' with Q^2 -dependent widths \Rightarrow reasonable agreement between model and fit

Parameter	Input	Fit(KS)	Fit(GS)	dual-	PDG value
				$QCD_{N_c=\infty}$	
$m_ ho$	-	773.9 ± 0.6	776.3 ± 0.6	input	775.5 ± 0.5
$\Gamma_{ ho}$	-	144.9 ± 1.0	150.5 ± 1.0	input	150.3 ± 1.6
m_ω	783.0	-	-	-	782.59 ± 0.11
Γ_{ω}	8.4	-	-	-	8.49 ± 0.08
$m_{ ho'}$	-	1357 ± 18	1380 ± 18	1335	1465 ± 25
$\Gamma_{ ho'}$	-	437 ± 60	340 ± 53	266	400 ± 60
$m_{ ho^{\prime\prime}}$	1700	-	-	1724	1720 ± 20
$\Gamma_{ ho''}$	240	-	-	344	250 ± 100
$m_{ ho^{\prime\prime\prime}}$	-	-	-	2040	-
$\Gamma_{ ho'''}$	-	-	-	400	-
c_0	-	1.171 ± 0.007	1.098 ± 0.005	1.171	-
β	c_0	2.30 ± 0.01	2.16 ± 0.015	2.3(input)	-
c_{ω}	0.00184(KS)	-	-	-	-
	0.00195(GS)				-
c_1	-	-0.119 ± 0.011	-0.069 ± 0.009	-0.1171	-
c_2	-	0.0115 ± 0.0064	0.0216 ± 0.0064	-0.0246	
c_3	$\sum c_n{=}1$	-0.0438 ∓ 0.02	-0.0309 ∓ 0.02	-0.00995	-
$\sum_{n=4}^{\infty} c_n$	-0.01936	-	-	-0.01936	-
$\chi^2/d.o.f.$	-	155/101	153/101	-	-

data point at 3.1 GeV $(J/\Psi
ightarrow \pi\pi)$ cannot be accomodated

spacelike region:

good agreement with data and with sum rules

$$e^+e^-
ightarrow K^+K^-\,,~K^0ar{K}^0$$

isospin symmetry:

$$egin{aligned} F_{K^+} &= +F^{(I=1)}+F^{(I=0)}\ F_{K^0} &= -F^{(I=1)}+F^{(I=0)} \end{aligned}$$

resonances:

$$egin{aligned} F_{K^+}(s) &= +rac{1}{2} \Big(c^K_
ho B W_
ho(s) + c^K_{
ho'} B W_{
ho'}(s) + c^K_{
ho''} B W_{
ho''}(s) \Big) \ &+ rac{1}{6} \Big(c^K_\omega B W_\omega(s) + c^K_{\omega'} B W_{\omega'}(s) + c^K_{\omega''} B W_{\omega''}(s)) \ &+ rac{1}{3} \Big(c_\phi B W_\phi(s) + c_{\phi'} B W_{\phi'}(s) \Big) \,, \end{aligned}$$

$$egin{split} F_{K^0}(s) &= -rac{1}{2} \Big(c_{
ho}^K B W_{
ho}(s) + c_{
ho'}^K B W_{
ho'}(s) + c_{
ho''}^K B W_{
ho''}(s) \Big) \ &+ rac{1}{6} \Big(c_{\omega}^K B W_{\omega}(s) + c_{\omega'}^K B W_{\omega'}(s) + c_{\omega''}^K B W_{\omega''}(s) \Big) \ &+ rac{1}{3} \Big(\eta_{\phi} c_{\phi} B W_{\phi}(s) + c_{\phi'} B W_{\phi'}(s) \Big) \end{split}$$

quark model:

constraint: $f_
ho=f_\omega\,,\quad g_{
ho KK}=g_{\omega KK}$

 $\Rightarrow c_{
ho} = c_{\omega}$

fit performed with (solid curves) or without (dashed curves) this constraint

Results:

Parameter	Input	Fit(1)	Fit(2)	PDG value
m_{ϕ}	-	1019.372 ± 0.02	1019.355 ± 0.02	1019.456 ± 0.02
$\Gamma_{oldsymbol{\phi}}$	-	4.36 ± 0.05	4.29 ± 0.05	4.26 ± 0.05
m_{ϕ^\prime}	1680	-	-	1680 ± 20
$\Gamma_{\phi'}$	150	-	-	150 ± 50
$m_ ho$	775	-	-	775.8 ± 0.5
$\Gamma_{ ho}$	150	-	-	150.3 ± 1.6
$m_{ ho'}$	1465	-	-	1465 ± 25
$\Gamma_{ ho'}$	400	-	-	400 ± 60
$m_{ ho^{\prime\prime}}$	1720	-	-	1720 ± 20
$\Gamma_{ ho^{\prime\prime}}$	250	-	-	250 ± 100
m_ω	783.0	-	-	782.59 ± 0.11
Γ_{ω}	8.4	-	-	8.49 ± 0.08
$m_{\omega'}$	1425	-	-	1400-1450
$\Gamma_{\omega'}$	215	-	-	180-250
$m_{\omega^{\prime\prime}}$	1670	-	-	1670 ± 30
$\Gamma_{\omega^{\prime\prime}}$	315	-	-	315 ± 35
c_{ϕ}	-	1.018 ± 0.006	0.999 ± 0.007	-
$c_{\phi'}$	$1-c_{\phi}^{K}$	-0.018 ∓ 0.006	0.001 ∓ 0.007	-
$c_{ ho}^{K}$	-	1.195 ± 0.009	1.139 ± 0.010	-
$c_{ ho'}^K$	-	-0.112 ± 0.010	-0.124 ± 0.012	-
$c_{ ho^{\prime\prime}}^{K}$	$1 - c_{ ho}^{K} - c_{ ho'}^{K}$	-0.083 ∓ 0.019	-0.015 ∓ 0.022	-
$c^{K}_{\omega}(1)$	c_{ρ}^{K}	1.195 ± 0.009	-	-
$c^{K}_{\omega}(2)$	-	-	1.467 ± 0.035	-
$c^{K}_{\omega'}(1)$	$c_{o'}^K$	-0.112 ± 0.010	-	-
$c^{ar{K}}_{\omega'}(2)$	-	-	-0.018 ± 0.024	-
$c_{\omega^{\prime\prime}}^{ ilde{K}}$	$1-c^K_\omega-c^K_{\omega'}$	-0.083 ∓ 0.019	-0.449 ∓ 0.059	-
$\chi^2/d.o.f.$	-	328/242	281/240	-

The Radiative Return at Φ - and B-Meson Factories 29

 $au
ightarrow K^- K^0
u$

Predictions based on isospin symmetry and I = 1 part of form factor:

$$egin{split} & \left(rac{1}{BR(au o \mu^- ar
u_\mu
u_ au_ au)}
ight) rac{dBR(au o K^- K^0
u_ au)}{d\sqrt{Q^2}} = \ & rac{|V_{ud}|^2}{2m_ au^2} \left(1+rac{2Q^2}{m_ au^2}
ight) \left(1-rac{Q^2}{m_ au^2}
ight)^2 \left(1-rac{4m_K^2}{Q^2}
ight)^{3/2} \ & imes \sqrt{Q^2} \, |F_{K^- K^0}(Q^2)|^2 \end{split}$$

and $F_{K^-K^0} = -F_{K^+} + F_{K^0}$ $\Rightarrow BR(au o K^-K^0
u_ au) = 0.19 \pm 0.01\% ~(0.13 \pm 0.01\%)$

to be compared with

 $BR(au o K^- K^0
u_ au) = 0.154 \pm 0.016\%.$

will provide further constraints!

VI Conclusions

- continuous development of PHOKHARA
 - \Rightarrow radiative corrections
 - \Rightarrow more channels
 - \Rightarrow cooperation between theory and experiment crucial
- charge asymmetry as analysis tool
- nucleon form factors:

 G_E and G_M can be measured for a wide range of Q^2

• pion form factor: structures at large Q^2

kaon form factors: K^+K^- & $K^0\bar{K}^0$ \Rightarrow K^-K^0 \Rightarrow prediction for $\tau \rightarrow \nu K^-K^0$

central issue: hadronic form factors !