

Exotic baryons on the lattice

Tamás G. Kovács
University of Pécs, Hungary

Lattice can identify low-lying hadronic states, starting from QCD with systematically controllable approximations.

- Does QCD predict exotic states?
- If yes, what are the experimentally unkwnon quantum numbers?
- First opportunity for the lattice to predict new particles.

This talk

- Why is it not so easy?
- How to interpret the results?
- Available (still inconclusive) results.

Review: F. Csikor, Z. Fodor, S.D. Katz and TGK, hep-lat/0407033.

Hadron spectroscopy in lattice QCD

Basic object computed numerically:
Euclidean correlation function of composite op. \mathscr{O} :

$$
\begin{gathered}
C_{\mathscr{O}}(t)=\langle 0| \mathscr{O}(t) \mathscr{O}^{\dagger}(0)|0\rangle=\sum_{i} \mid\langle 0| \mathrm{e}^{H t} \mathscr{O}(0) \mathrm{e}^{-H t}|i\rangle\langle i| \mathscr{O}^{\dagger}(0)|0\rangle= \\
\left.\sum_{i}\left|\langle i| \mathscr{O}^{\dagger}(0)\right| 0\right\rangle\left.\right|^{2} \mathrm{e}^{-\left(E_{i}-E_{0}\right) t},
\end{gathered}
$$

where

$$
\mathscr{O}(t)=\mathrm{e}^{-H t} \mathscr{O} \mathrm{e}^{H t} .
$$

and $|i\rangle$: eigenvectors of the Hamiltonian with eigenvalue E_{i}.
t large \Rightarrow Lightest states (created by \mathscr{O}) dominate.
\Rightarrow Exponential fit gives $E_{i}-E_{0}$'s

Correlator

Effective mass

How to choose \mathscr{O} ?

Has to have quantum numbers of the desired state for $\langle i| \mathscr{O}(0)|0\rangle \neq 0$.

- Internal quantum numbers, spin (later)
- Total momentum

Projection to zero total momentum: $\sum_{\vec{x}} \mathscr{O}(0, \vec{x})$

- Single particle state $\Rightarrow E_{1}=m$
- 2-particle "continuum" $\Rightarrow E_{1}=m+M$, $E_{2}=\left(m^{2}+p^{2}\right)^{1 / 2}+\left(M^{2}+p^{2}\right)^{1 / 2}$, relative momentum can be $p_{i}=2 \pi k_{i} / L$.
- Large overlap with desired state \Rightarrow smaller statistical errors.
- Small overlap with competing states. (Nucleon + Kaon)
- Essential to build in knowledge about the wave function!

If you see nothing, either there is nothing or you chose the wrong operator.
Lattice calculations cannot disprove the existence of a state!

Spatial wave function (why can't we do arbitrary w.f.'s?)

How is the correlator $C(t)$ computed?
Simple example: pion $\mathscr{O}=\bar{u} \gamma_{5} d$

$$
\langle 0| \bar{u}(x) \gamma_{5} d(x) \quad \bar{d}(0) \gamma_{5} u(0)|0\rangle
$$

Use Wick's theorem to decompose into sums of products of the form

$$
\langle 0| d_{\alpha}(x) \bar{d}_{\beta}(0)|0\rangle=(D+m)_{x \alpha, 0 \beta}^{-1}
$$

General wave function:

$$
\mathscr{O}(0)=\int d^{3} x \int d^{3} y f(\vec{x}, \vec{y}) \bar{u}(\vec{x}, 0) \gamma_{5} d(\vec{y}, 0)
$$

For arbitrary wave fn ., quark propagators $D^{-1}(x \alpha, y \beta)$
(from any point to any other point) are needed.
\Rightarrow Order 10^{13} matrix elements i.e. ≈ 100 Tbytes to be stored

Solution: We store only $\sum_{\vec{y} \beta}(D+m)_{\vec{x}, 0, \alpha ; \vec{y}, 0, \beta}^{-1} \psi_{\beta}(\vec{y})$ for some ψ 's
Consequences: \mathscr{O} can be built only as

- a product of 1-quark wave functions
- each 1-quark wave function requires "only" 12 Dirac op. inversions
- Iterative sparse matrix techniques can be used
- Typical lattice spectroscopy uses only one source $\psi(x)$, all wave functions are built out of this.
- Extended "source" wave function \Longrightarrow smaller overlap with higher states.
- Same propagator can be used for u and d quark.

Special problems with exotics

Spin, flavour, colour structure

Index summations exponentially more expensive with the number of quarks

- 3q baryons: summation negligible compared to inversion
\Rightarrow - Simplest $5 q$ operators: summation is order 50%

Pentaquark operators used so far on the lattice:

- All with one type of quark wave function
- O is a product of 1-particle states
- A few different spin, flavour, colour structures

Spin, flavour, colour (continued)

- $\mathscr{O}_{I=0 / 1}=\varepsilon_{a b c}\left[u_{a}^{T} C \gamma_{5} d_{b}\right]\left\{u_{c} \bar{s}_{e} \gamma_{5} d_{e} \mp(u \leftrightarrow d)\right\}$ Nucleon \times Kaon colour structure (Csikor et al., Liu et al.)
- Diquark-diquark antiquark

$$
\mathscr{O}_{I=0}=\varepsilon_{a d g}\left[\varepsilon_{a b c} u_{b}^{T} C \gamma_{5} d_{c}\right]\left[\varepsilon_{d e f} u_{e}^{T} C \gamma_{5} d_{f}\right] C \bar{s}_{g}^{T}
$$

If the two diquarks are in the same spatial wave function symmetric with respect to interchanging diquarks (ad)
\Rightarrow non-trivial spatial wave-function needed
\Rightarrow Projection to spin eigenstates $\Rightarrow 6$ propagators needed, not 1 .
(No published lattice results so far.)

- To avoid spatially antisymmetric wave-function.:

$$
\mathscr{O}_{I=0}=\varepsilon_{a d g}\left[\varepsilon_{a b c} u_{b}^{T} C d_{c}\right]\left[\varepsilon_{d e f} u_{e}^{T} C \gamma_{5} d_{f}\right] C \bar{s}_{g}^{T}
$$

(Sasaki, Chiu \& Hsieh, Ishii et al.)

Parity assignment

- \mathscr{O} does not create parity eigenstates, but

$$
P \mathscr{O} P^{-1}= \pm \gamma_{0} \mathscr{O},
$$

- \pm is the internal parity of \mathscr{O}
- For non-pointlike operators, can be more complicated.
- Parity projection: $\frac{1}{2}\left(\mathscr{O} \pm P \mathscr{O} P^{-1}\right)$
- Compute correlators separately in both channels.
- Identify the state we are looking for by its energy.

Separating two-particle states and 5q state

The Θ^{+}is above threshold \Rightarrow embedded in 2-particle NK continuum. finite $V \Rightarrow$ all states are discrete.
In realistic lattice volumes:

$$
\begin{array}{ll}
-N \times K, p=\sqrt{2} * 2 \pi / L & +- \\
-N \times K, p=1 * 2 \pi / L & +- \\
-m_{\Theta^{+}} & \text {??? } \\
-N \times K, p=0 & -
\end{array}
$$

- Level structure: $\quad-N \times K, p=1 * 2 \pi / L \quad+-$
- Lowest state in - parity channel: $m_{N}+m_{K}$ (S-wave)
- Lowest state in + parity channel: Θ^{+}or $\left(m_{N}^{2}+p^{2}\right)^{1 / 2}+\left(m_{K}^{2}+p^{2}\right)^{1 / 2}$ ($p=2 \pi / L \approx 400 \mathrm{MeV}$, P-wave)

Pentaquark signal can be safely confirmed only after all nearby 2-particle states have been clearly identified

How to tell 2-particle state from 1-particle state?

Changing the volume

- Is there a volume dependence of the mass consistent with

$$
\begin{gathered}
\left(m_{N}^{2}+p^{2}\right)^{1 / 2}+\left(m_{K}^{2}+p^{2}\right)^{1 / 2} \\
p=\frac{2 \pi}{L}
\end{gathered}
$$

- Does the amplitude $\left.\left|\langle 1| \mathscr{O}^{\dagger}(0)\right| 0\right\rangle\left.\right|^{2}$ go down with the volume?

How to identify several low-lying states?

- Fit with sum of exponentials: (Sasaki) $C_{1} \mathrm{e}^{-m_{1} t}+C_{2} \mathrm{e}^{-m_{2} t}+\ldots$ Does not really work...
- Use cross correlators (Csikor et al.)

$$
\begin{aligned}
\mathscr{O}|0\rangle & \approx A_{1}|1\rangle+A_{2}|2\rangle+\ldots, \\
\mathscr{O}^{\prime}|0\rangle & \approx A_{1}^{\prime}|1\rangle+A_{2}^{\prime}|2\rangle+\ldots
\end{aligned}
$$

- Mix two operators $\mathscr{O} \cos \phi+\mathscr{O}^{\prime} \sin \phi$
- Choose ϕ to cancel lowest or 2nd lowest state (Eg. minimise (maximise) effective mass w.r.t. α)
- Can be generalised to more operators
- Expensive! Have to compute $\langle\mathscr{O} \mathscr{O}\rangle,\left\langle\mathscr{O} \mathscr{O}^{\prime}\right\rangle,\left\langle\mathscr{O}^{\prime} \mathscr{O}^{\prime}\right\rangle$.

Extrapolations

Any lattice calculation involves two extrapolations

- Chiral extrapolation:

Simulation at physical ud quark masses too expensive
\Rightarrow simulate heavier quarks and extrapolate to $m_{\pi}=135 \mathrm{MeV}$.

- Continuum extrapolation: lattice spacing $\rightarrow 0$. different lattice actions have different cut-off effects

	action	$a(\mathrm{fm})$	smallest $m_{\pi}(\mathrm{MeV})$
Csikor et al.	Wilson	$0.17-0.09$	420
Sasaki	Wilson	0.07	650
Mathur et al.	chiral	0.20	180
Chiu \& Hsieh	chiral	0.09	400
Ishii et al.	improved Wilson	0.15	850

Results and interpretation

Lowest state seen is in $I^{P}=0^{-}$channel, mass in other parity channel much higher.

- Csikor et al. \& Sasaki

Consistent: $I^{P}=0^{-}$, however NK scattering state still not ruled out.

- Mathur et al. identify only NK scattering states by volume dependence of amplitudes \Rightarrow can explain why they see only 2-particle states Use Nucleon \times Kaon operator
- Ishii et al.
lowest state interpreted as NK scattering by using twisted boundary conditions

Lowest state seen is in $I^{P}=0^{+}$channel, mass in other parity channel much higher.

- Chiu \& Hsieh $I^{P}=0^{+}$??? they claim, due to better chiral action Not very likely:
- In all studies huge difference between two parity channels
- No precedent for such a discrepancy between chiral and Wilson action

Might be misidentified parity \Rightarrow Independent cross-check needed

Warning!

Nobody sees the lowest expected scattering state in both parity channels.

Perspectives

Five independent lattice studies so far.
F. Csikor, Z. Fodor, S.D. Katz and T.G. Kovács, JHEP 0311 (2003) 070.
S. Sasaki, PRL 93 (2004) 152001.
N. Mathur et al. PRD 70 (2004) 074508.

Ting-Wai Chiu and Tung-Han Hsieh, hep-ph/0403020, hep-ph/0404007
N. Ishii, T. Doi, H. Iida, M. Oka, F. Okiharua and H. Suganuma, hep-lat/0408030.

- To be done
- Resolve discrepancy of Chiu \& Hsieh
- Systematically map out low-lying level structure (including the expected 2 -particle states).
- Technically:
other operators with non-trivial spatial wave function and finite volume analysis.

