

Cosmic multi-muon bundles detected by DELPHI

P. Travnicek, J. Ridky for DELPHI collaboration

Epiphany 2004, Krakov 8-12 Jan., Poland

Outline

- Detection of CR by LEP experiments
- DELPHI detector
- DELPHI trigger of CR
- Data sample
- MC simulation
- Results
- Conclusion

Detection of CR by LEP experiments

Hadron calorimeter barrel module Sensitive units - streamer tubes 1 tube has x-section 8 × 1 cm in (x,y) plane

Read-out only YES or NO, length of a tube in barrel part 350 cm

DELPHI Cosmic Trigger

Defined as TOF-MJ3 (coincidence of 3 counters) , parasitic mode: e^+e^- data taking simultaneously with cosmic data, several dedicated cosmic runs

Duty cycle $\approx 4/22 \approx 18$ %, running time 8.7 10⁶ s total live time $\approx 1.6 \ 10^6$ s

Detection area

Example of reconstructed event

Example of reconstructed event

RUN 107634 ; EVT = 4731

HCAL projected angle

Muon multiplicity distribution

Saturated events

- too many hits to reconstruct all muon tracks
- 6 events to be of cosmic origin parallel lines of vacancies
- ⇒multiplicity > 127 events with additional information from MUB ⇒multiplicity >150

Saturated events

ytu VS. xtu

ytu VS. xtu

Overlapping tracks

Reconstruction only in 1 projection -> overlapping tracks

TPC preliminary reconstruction

muon density per m²

Point sources – sidereal time, HCAL multiplicity > 3

Point sources – TPC sky plot, HCAL multiplicity > 15

MC simulation of cosmic events in HCAL

- QGSJET, CORSIKA, GEANT3, DELSIM
- Cosmic particles: p, Fe
- Primary particle energy $10^{12} 10^{18} eV$
- Events generated according to E⁻¹ and weighted to E^{-2.7 (3.0)}
- Shower impact points smeared over circle with radius R = 200 m

Simulation chain

Rock/Cavern geometry

5 layers of rock with different mass densities,3 pits included

Contribution of different energy intervals

Results – MC and DATA

Conclusions

- Multi-muon bundles reconstructed from DELPHI
- HCAL and TPC (preliminary)
- Measurement of multiplicity distributions
- Comparison of MC and DATA
 - Proton MC prediction is in agreement with the data for small multiplicities (first 3 bins)
 - •Trend from light to heavier component in cosmic ray composition
 - •Possible excess of high multiplicity events with respect to MC prediction