(Some) Properties of Extensive Air Showers

#### Markus Risse

H. Niewodniczański Institute of Nuclear Physics (PAS), Kraków, Poland Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany

> Cracow Epiphany Conference on Astroparticle Physics January 8-11, 2004

> > no review: introduction

no data: simulations

not complete: focus

nie po polsku: jeszcze nie

### **Extensive Air Showers are ...**

". Sratis! **known** for ≈70 years cascades initiated by cosmic rays in air connection to **highest particle energies** in nature steep spectrum -> low flux above 1 PeV tools for astrophysics and particle physics consisting of **different shower components** -> observables & detection techniques => reconstruction **fluctuating** (1.: analysis 2.: MC simulation) here: **CORSIKA** EAS-MC

## **EAS: Schematic View**



# **Energy Flow in EAS: CORSIKA simulation**



CORSIKA: Heck et al., 1998

#### Hadrons:

each step 1/3 k in elm channel

- →  $E_{had}/E_0(X) \approx (1-1/3 \text{ k})^{X/\lambda_{had}}$
- hadronic scale depth:

 $|\lambda_{had}/\ln(1-1/3 \text{ k})| = 250 \text{ g/cm}^2$ 

with:  $\lambda_{had}$  60g/cm<sup>2</sup>, k 0.6

#### Muons, neutrinos:

≈ few %; integral character

#### **Electromagnetic:**

feeding by had vs ionization loss

# **Energy Flow and Ionization Loss**



relativistic particle:  $dE_i^{(1)}/dX = \alpha \approx \text{const}$  $\alpha \approx 2 \text{ MeV/gcm}^{-2}$ 

→ EAS:  $dE_i/dX$  (X) ≈ α \*N<sub>e</sub>(X)

**Electromagnetic:** feeding by hadrons vs ionization loss

- →  $dE_i/dX => 70-90\%$  of  $E_0$  in air
- → max. of contained energy <=>  $-dE_{had}/dX = dE_i/dX$  (-> not  $X_{max}$  !)
- → observation: N<sub>e</sub> (ground) & dE/dX (fluorescence) -> particle multiplication

M. Risse, Epiphany 2004

# **Particle Multiplication: Toy Model**



X [g/cm<sup>2</sup>] (*atm. depth*)

(*Heitler 44*)

-> qualitatively OK:  $N_{max} \sim E_0$  $X_{max} \sim ln(E_0/AE_L)$  each vertex: equal energy splitting => after n=X/ $\lambda$  steps: N(X) =  $2^{X/\lambda}$ particles with E(X) = E<sub>0</sub>/N(X)

particle multiplication stops at

 $E(X) = E_L \implies \text{shower maximum:}$  $N(X_{max}) = E_0 / E_L$  $X_{max} = \lambda / \ln 2 * \ln(E_0 / E_L)$ 

with **superposition** model

for nucleus  $E_0 \rightarrow A^*E_0/A \dots$ 

# **Primary Mass Separation (1): X**<sub>max</sub>



$$\sim$$
 max> ~ ln(E<sub>0</sub>/AE<sub>L</sub>)

✓ 
$$X_{max}(Fe) < X_{max}(p)$$
 (≈80g/cm<sup>2</sup>)

sensitivity on primary mass

# **Primary Mass Separation (1): X**<sub>max</sub>



$$\sim$$
 max> ~ ln(E<sub>0</sub>/AE<sub>L</sub>)

✓ 
$$X_{max}(Fe) < X_{max}(p)$$
 (≈80g/cm<sup>2</sup>)

- → sensitivity on primary mass
- $N_{max}$  similar (also area)
- $N_{ground}(Fe) < N_{ground}(p)$   $(X_{max} !)$

but: X<sub>max</sub> fluctuations !

- →  $\Delta X_{max}$ , p≈60g/cm<sup>2</sup>, Fe≈20g/cm<sup>2</sup>
- → event-by-event difficult
- → measure *fluctuations* -> mass

### p vs Fe: Muons



**Fe: more muons** (total number) -> *primary mass sensitivity* 

- $\sim$  smaller E<sub>0</sub>/A ->  $\pi^{+-}$  less energetic -
- higher altitude -> smaller  $\rho$

### **Primary Mass Separation (2):** N<sub>e</sub> vs N<sub>µ</sub>



**correlated** measurement (+ analysis)

> primary energy and mass

# **Lateral Distributions on Ground**



different characteristics of shower components:

muon lat.dist. flatter (from larger altitudes)

## **Lateral Distribution and Primary Mass**



Fe lat.dist.s flatter (from larger altitudes)

- Fe more muons (p more electrons: r < 200 m)
- densities vs distance -> primary mass sensitivity

# More Properties ... flashed

S(600-1000m): smaller ground particle fluctuations

- > primary energy with large ground arrays
- **time structure** of front (muons vs electrons)
  - primary mass sensitivity
- inclined showers (atmosphere "filters" muons)
  - primary mass sensitivity
- EAS hadrons: also primary mass sensitivity; but ...
  - > test of interaction models
- **primary photons** at  $E_0 > 10^{19}$  eV (preshower, LPM)
  - → separation of primaries ?

# **Conclusion: Extensive Air Showers ...**

different shower components (w different features)

- → handle to determine E, A
- → astrophysics



- > high-energy interactions, forward direction
- > particle physics

even after many decades:

... fascinating tools for astro & particle physics

