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Summary
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1. Pulsar emission

a) Pulsar energy output
Standard radio-pulsars

- rotating neutron stars, periods P ~ 10ms — 1s,

mass M ~ 1M,

spin-down rates P ~ 1071 — 10 g5 !,

magnetic field B ~ 10'*G.

Spin-down luminosity

E = m.w_éﬁ = Jww ~ 10%° — 10¥ergs™!

- the moment of inertia, I ~ 10%°gem?, from neutron



star models,
- values: E ~ (102 — 10°) L., brightest stars: L ~ 10°L,
- total rotational energy of a young pulsar: E,,; ~ 10°terg
Pulsars are powerful galactic emission sources,
(young neutron stars cool by thermal neutrino and photon
emission, F;,; decreases)

b) Nature of pulsar emission
- detected in a broad range of electromagnetic radiation:

radio, optical, X-rays, ~y-rays
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- however total electromagnetic small: L., << E
e.g. Crab: Ly + L, ~ 0.1E, L,,4, ~ 107 °E

(" by-product” of pulsar's main activity)



2. Crab nebula

a) Main emission:

Bulk of E emitted as a relativistic magnetized wind.

The pulsar wind visible when interacts with external matter.
b) Pulsar wind nebulae

- very young pulsars (~ 1000 years) still in SNR:

pulsar wind confined by external pressure

- Crab Nebula - a prototype (SN 1054):

expanding bubble, seen radio, optical and X-ray nebula
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- Synchrotron radiation by relativistic electrons (positrons)
from the central pulsar
- radio emission - traces "integrated history” (long electron
lifetime)
- X-ray emission - current pulsar state (short lifetime)
c) Bow-shock nebulae
Older pulsars: SNR dissipated, neutron stars move at
~ 500kms~.

Pulsar’'s wind generates a bow shock.









d) Properties of the Crab Nebula
- wind terminated by shock at r, = 0.1pc

- wind energy

E = S\MUOQSSSQ |_| :\w@.sg&o

- model of Kennel and Coroniti (1984): very good fit of

spectrum with Yuing = 3 X 10° and

before the shock.

- the wind at r;, = 0.1pc is dominated by kinetic energy of
plazma with v ~ 10°



3. Pulsar wind models

a) Basic idea:
- rotating magnetized neutron star generates
electromagnetic radiation (Pacini 1967, Gold 1968)
- strong electric field is induced, E = ¢ '1Q x r x B,
which injects charged particles, ete™ pairs, into
magnetosphere (Goldreich and Julian 1969; Strurrock 1970)
- electromagnetic field accelerates the plazma converting
its energy into kinetic energy of the outflowing plazma
(Poynting flux acceleration)

b) Historical model



Gunn and Ostriker (1969) (not realistic):

- magnetic dipole rotating with frequency 2 —

- electromagnetic monochromatic spherical waves of low
frequency 2 —

- (test) particles tightly coupled to the wave by its strong
magnetic field, coupling ~ eB(mc)~! > 10° —

- particles "ride the wave” at essentially constant phase;

- very effective acceleration up to the energy

3 eBj ?eﬁo
V2mef) 1

E

E, = mc?|

- Crab: rg = 2 = 1576km (light cylinder),



r. =1, = 0.1pcC
- protons: E, = 1.6 x 10%eV ~ 1.6 x 10°m,,c*
unfortunately, pulsars do not radiate strong electromagnetic
waves of rotation frequency {2

c) Current (most promising) model
- observations hints: mechanism needed
to effectively convert @Sﬁ into kinetic energy of the wind,
employing magnetic field,
with o >> 1 near the light cylinder
and o0 << 1 atr ~ 0.1pc.

-the problem of pulsar emission, especially converting



the Poynting flux into kinetic energy of the outfowing
matter, turned out to be very complex and difficult
(e.g. Michel 2001)

Recent results
- Contopoulos, Kazanas and Fendt (1999) first self-
consistent solution of the axisymmetric magnetosphere
of an aligned rotating magnetic dipole (MHD)
- split-monopole-like open field lines far from the light
cylinder, rsinf >> R,

- field lines velocity



for rsin0@ >> Ry,
- the wind Lorentz factor becomes v ind — YE

- particles " surf-ride” on the electromagnetic field (B-parallel

velocity negligible)



A

- the wind is a linear accelarator, vg ~ 7; radiation

losses negligible



4. Neutron stars with ultra-strong magnetic fields

a) Maximum energy of particles (from possible

potential difference)

H ( $2
1033cgs "104s—1

E,.. =3 x 10* )’eV

- neutron star magnetic moment p > 10%%¢gs for

B > 10"G:
B =10"*G,P = 0.033s, E,,,, = 6 x 10'%eV
Maximum energy ~ 10%leV

only for ultra-strong magnetic fields, B ~ 10“G



and fast rotation (2 = 10*s~!, P = 0.63ms)

Most promising sources: fast rotating neutron stars with
ultra-strong magnetic fields

b) High-field neutron stars

- Magnetars in Soft Gamma Repeters

(4 known): B ~ 104G,

periods now ~ 5 — 10s;

probably born with short periods ~ 1ms

- Anomalous X-ray Pulsars (AXP) similar B and P as
magnetars (possibly the same class of neutron stars),

6 known (and candidates)



- Radio pulsars with magnetar field (recent discovery in
Parkes Pulsar Survey) magnetic field B = 10G

and periods P=3s,6s.



