Compact galactic sources of cosmic radiation

M. Kutschera

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków Institute of Physics, Jagiellonian University, Kraków

Epiphany 2004 Kraków, 11.01.2004

Summary

- 1. Pulsar emission
- 2. Crab nebula
- 3. Pulsar wind model
- 4. Neutron stars with ultra-strong magnetic fields

1. Pulsar emission

a) Pulsar energy output

Standard radio-pulsars

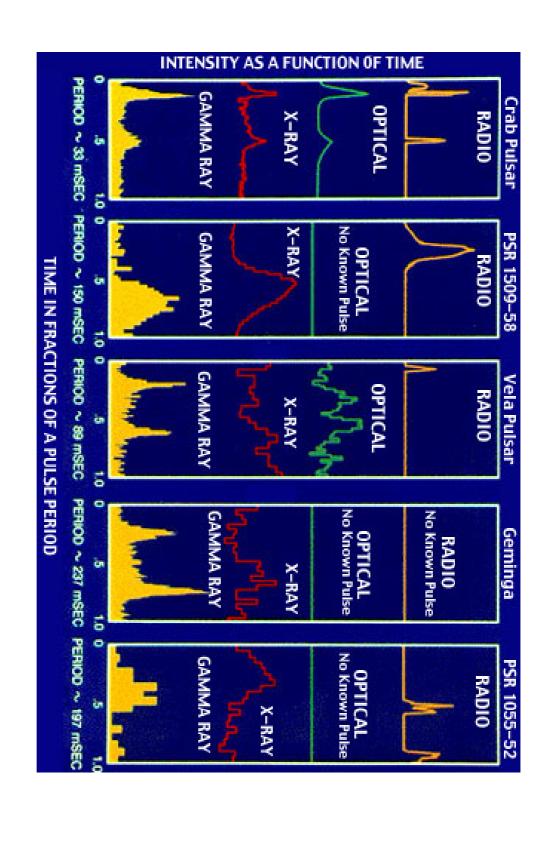
- rotating neutron stars, periods $P~\sim 10ms-1s$,
- mass $M\sim 1 M_{\odot}$,
- spin-down rates $\dot{P}\sim 10^{-11}-10^{-14}ss^{-1}$,
- magnetic field $oldsymbol{B} \sim 10^{12} G$.

Spin-down luminosity

$$\dot{m E}\equiv\dot{m E}_{rot}=m I\omega\dot{m \omega}\sim 10^{35}-10^{39}ergs^{-1}$$

the moment of inertia, $I\sim 10^{45} gcm^2$, from neutron

star models,


- values: $\dot{m E} \sim (10^2-10^6) L_\odot$, brightest stars: $L \sim 10^6 L_\odot$
- total rotational energy of a young pulsar: $m{E}_{rot} \sim m{10}^{51} m{erg}$

Pulsars are powerful galactic emission sources,

emission, E_{int} decreases) (young neutron stars cool by thermal neutrino and photon

- b) Nature of pulsar emission
- detected in a broad range of electromagnetic radiation:

radio, optical, X-rays, γ -rays

- however total electromagnetic small: $m{L}_{em} << m{\dot{E}}$

e.g. Crab: $m{L}_X + m{L}_\gamma \sim m{0.1}\dot{m{E}}$, $m{L}_{radio} \sim m{10}^{-8}\dot{m{E}}$

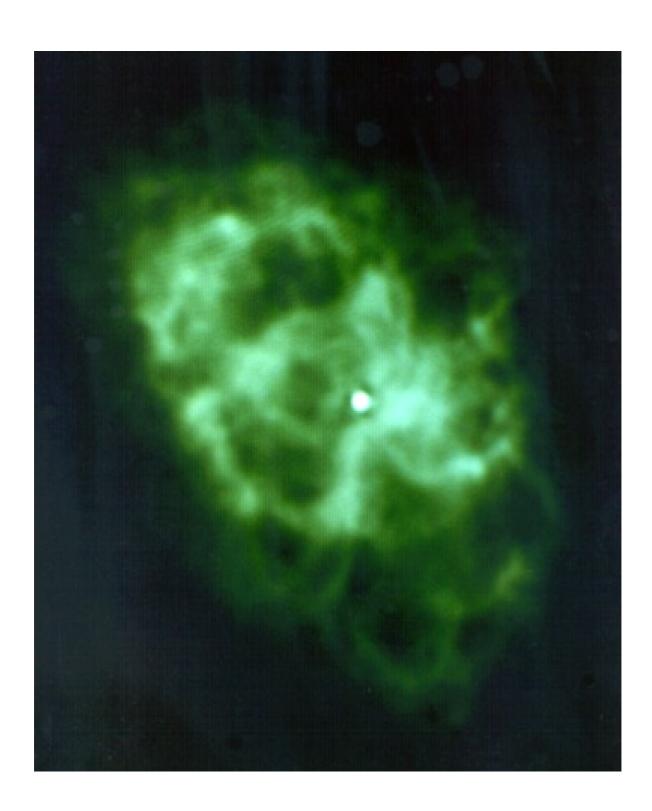
("by-product" of pulsar's main activity)

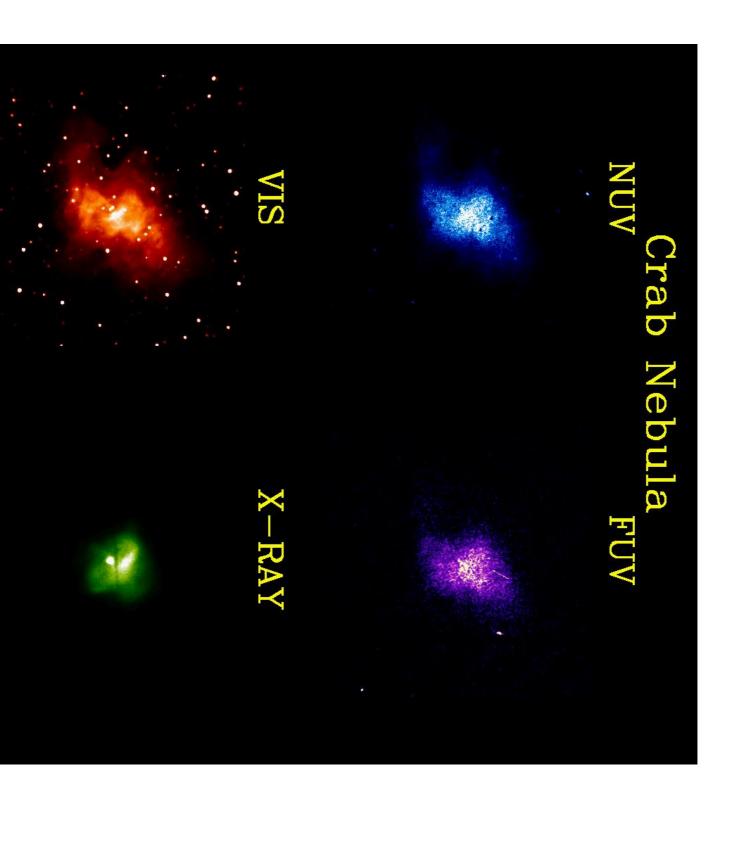
2. Crab nebula

a) Main emission:

Bulk of $\dot{m E}$ emitted as a relativistic magnetized wind.

The pulsar wind visible when interacts with external matter.


b) Pulsar wind nebulae


- very young pulsars (~ 1000 years) still in SNR:

pulsar wind confined by external pressure

- Crab Nebula - a prototype (SN 1054):

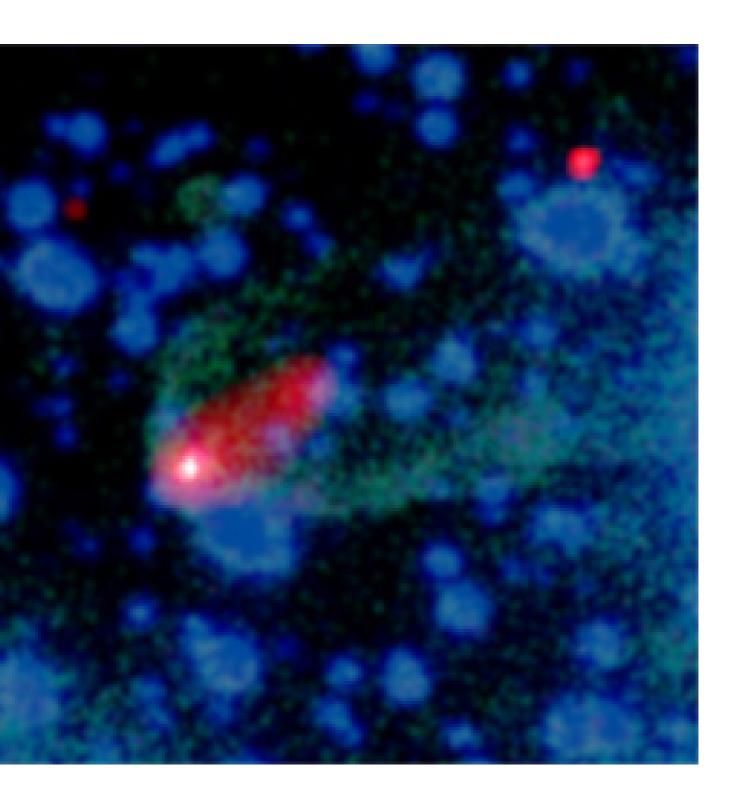
expanding bubble, seen radio, optical and X-ray nebula

Synchrotron radiation by relativistic electrons (positrons)

from the central pulsar

- radio emission - traces "integrated history" (long electron

lifetime)


X-ray emission - current pulsar state (short lifetime)

c) Bow-shock nebulae

Older pulsars: SNR dissipated, neutron stars move at

 $\sim 500 km s^{-1}$

Pulsar's wind generates a bow shock.

- d) Properties of the Crab Nebula
- wind terminated by shock at $r_s=0.1 pc$
- wind energy

$$\dot{m E} = m W_{Poynting} + m W_{kinetic}$$

spectrum with $\gamma_{wind}=3 imes10^6$ and - model of Kennel and Coroniti (1984): very good fit of

$$\sigma = rac{W_{Poynting}}{W_{kinetic}} = exttt{0.003}$$

before the shock.

plazma with $\gamma \sim 10^6$ - the wind at $r_s=0.1 pc$ is dominated by kinetic energy of

3. Pulsar wind models

- a) Basic idea:
- rotating magnetized neutron star generates
- electromagnetic radiation (Pacini 1967, Gold 1968)
- strong electric field is induced, $\mathbf{E} = c^{-1} \mathbf{\Omega} imes \mathbf{r} imes \mathbf{B}$,
- which injects charged particles, e^+e^- pairs, into
- magnetosphere (Goldreich and Julian 1969; Strurrock 1970)
- electromagnetic field accelerates the plazma converting
- (Poynting flux acceleration) its energy into kinetic energy of the outflowing plazma
- b) Historical model

Gunn and Ostriker (1969) (not realistic):

- magnetic dipole rotating with frequency $\Omega
 ightarrow$
- electromagnetic monochromatic spherical waves of low

frequency $\Omega
ightarrow$

- (test) particles tightly coupled to the wave by its strong magnetic field, coupling $\sim eB(mc\Omega)^{-1}>10^8
 ightarrow$
- particles "ride the wave" at essentially constant phase;
- very effective acceleration up to the energy

$$E_c = mc^2 [rac{3}{\sqrt{2}}rac{eB_0}{mc\Omega}lnrac{r_c}{r_0}]^{rac{2}{3}}$$

Crab: $r_0 = c\Omega = 1576km$ (light cylinder),

$$r_{\scriptscriptstyle C}=r_{\scriptscriptstyle S}=0.1pc$$

- protons:
$$E_c=1.6 imes10^{15}eVpprox1.6 imes10^6m_pc^2$$

unfortunately, pulsars do not radiate strong electromagnetic

- waves of rotation frequency (1)
- c) Current (most promising) model
- observations hints: mechanism needed

employing magnetic field, to effectively convert $oldsymbol{E}_{rot}$ into kinetic energy of the wind,

with $\sigma >> 1$ near the light cylinder

and $\sigma << 1$ at $r \sim 0.1 pc$.

-the problem of pulsar emission, especially converting

the Poynting flux into kinetic energy of the outfowing matter, turned out to be very complex and difficult

(e.g. Michel 2001)

Recent results

consistent solution of the axisymmetric magnetosphere - Contopoulos, Kazanas and Fendt (1999) first self-

of an aligned rotating magnetic dipole (MHD)

- split-monopole-like open field lines far from the light

cylinder, $rsin heta >> R_{lc}$

field lines velocity

$$\mathbf{v}_E = c rac{\mathbf{E} imes \mathbf{B}}{B^2} = c (\hat{r} rac{x^2}{1+x^2} + \hat{\phi} rac{x}{1+x^2})$$

$$x\equiv rac{rsin heta}{R_{lc}}$$

$$\gamma_E = (1-(rac{oldsymbol{v}_E}{oldsymbol{c}})^2)^{-rac{1}{2}}
ightarrow rac{oldsymbol{rsin} heta}{oldsymbol{R}_{lc}}$$

for $rsin heta >> R_{lc}$:

- the wind Lorentz factor becomes $\gamma_{wind}
 ightarrow \gamma_E$
- velocity negligible) - particles "surf-ride" on the electromagnetic field (B-parallel

- the wind is a linear accelarator, $\mathbf{v}_E \sim \hat{\boldsymbol{r}}$; radiation

losses negligible

4. Neutron stars with ultra-strong magnetic fields

a) Maximum energy of particles (from possible potential difference)

$$E_{max} = 3 imes 10^{22} rac{\mu}{10^{33} cgs} (rac{\Omega}{10^4 s^{-1}})^2 eV$$

- neutron star magnetic moment $\mu > 10^{32} cgs$ for

$$B > 10^{14}G$$
:

$$B=10^{12}G, P=0.033s, E_{max}=6 imes 10^{18}eV$$

Maximum energy $\sim 10^{21} eV$

only for ultra-strong magnetic fields, $m{B} \sim 10^{14} m{G}$

and fast rotation $(\Omega=10^4 s^{-1}, P=0.63 ms)$

ultra-strong magnetic fields Most promising sources: fast rotating neutron stars with

- b) High-field neutron stars
- Magnetars in Soft Gamma Repeters
- (4 known): $m{B} \sim 10^{14} G$,

periods now $\sim 5-10s$;

probably born with short periods $\sim 1 \text{ms}$

- magnetars (possibly the same class of neutron stars), Anomalous X-ray Pulsars (AXP) similar B and P as
- 6 known (and candidates)

- Radio pulsars with magnetar field (recent discovery in Parkes Pulsar Survey) magnetic field $oldsymbol{B}=\mathbf{10}^{14}oldsymbol{G}$

and periods P=3s,6s.