High-Energy Neutrino Astronomy Opportunities For Particle Physics

Dan Hooper-University of Oxford

January 2004 Cracow, Poland

Neutrino-Nucleon Interactions

-TeV Scale Extra Dimensions

-Microscopic Black Hole Production

-Electroweak Instanton Induced Interactions

Particle Dark Matter

-Indirect Searches Using Neutrino Telescopes

-Neutrinos From Dark Matter In Top-Down Cosmic Ray Scenarios

Neutrino Properties

-Neutrino Decay

-Pseudo-Dirac Mixing Scenarios

-Absolute Neutrino Masses

THE EXPERIMENTS

► AMANDA-II

50,000 square meters effective area Antarctic ice Cerenkov medium Currently Taking Data

THE EXPERIMENTS

► ANTARES

0.1 square kilometer scaleMediterranean LocationUnder ConstructionOther Water Based Experiments: Baikal, Nestor

► Next Generation: ICECUBE!

Full Square Kilometer Effective Area First Strings In 2004, Completed in 2009

IceCube

Performance

-Subdegree Angular Resolution
-Energy Resolution via Shower Radii
-Effective Volume Enhanced By Muon Range

IceCube

Flavor Discrimination

-Muon Tracks -Hadronic/Electromagnetic Showers -Double Bang Events

IceCube/AMANDA

Calibration

-New Experimental Methods Require Rigorous Calibration
-AMANDA Calibrated Using Atmospheric Neutrinos
-Difficult to Accomplish With UHE Experiments

Ultra-High Energy Experiments

- Radio Cerenkov
 Rice (Ice)
 Anita (Baloon Flight)
- Air Shower Experiments AUGER (Ground Array) EUSO (ISS)
- Beyond Anita/EUSO Salsa (Salt Domes)
 IceCube-Plus/HyperCube

HIGH-ENERGY NEUTRINO

INTERACTIONS

- Neutrino Interactions Via Gravity
 - -Kaluza-Klein Resonances
 - -String Excitations

See (for example):

Jain, McKay, Panda, Ralston, PLB (hep-ph/0001031); Jain, Jain, McKay, Ralston, IJMP (2002 and hep-ph/0011310); Freiss, Han and Hooper, PLB (hep-ph/0204112); Alvarez, et al. PRL (hep-ph/0107057),PRD (hep-ph/0202081); Anchordoqui, *et al*, (hep-ph/0112247, hep-ph/0311365, hep-ph/0112247); Kowalski, Ringwald and Tu, PLB (hep-ph/0201139)

HIGH-ENERGY NEUTRINO INTERACTIONS

Microscopic Black Hole Production

See (for example):

Giddings, Thomas, PRD (hep-ph/0106219);

Feng, Shapere, PRL (hep-ph/0109106);

Anchordoqui, Feng, Goldberg, Shapere, PRD (hep-ph/0112247);

Kowalski, Ringwald, Tu, PLB (hep-ph/0201139);

Alvarez, Feng, Halzen, Han, Hooper, PRD (hep-ph/0202081)

Measuring ν Cross Sections

Measuring ν Cross Sections

MEASURING ν CROSS SECTIONS

► Low-Scale Quantum Gravity

-ADD \rightarrow Up To 1-2 TeV with IceCube

-Randall-Sundrum \rightarrow Only Sensitive to $\sim 500~{\rm GeV}$ Resonances

-Stringy Resonances Via Veneziano Amplitudes

 \rightarrow Up To 1-2 TeV Via Gluon Interactions

Black Hole Production

-Current Cosmic Ray Data Excludes Below \sim 1-1.5 TeV

-AUGER Will Reach \sim 2-4 TeV

-IceCube Will Reach Sensitivity For \sim 1-2 TeV

-3 Channel Measurement

Electroweak Instantons

-Similar Techniques -Prospects Depend On Details of Cross Section Calculation (Ringwald, JHEP, hep-ph/0307034; Han and Hooper, PLB, hep-ph/0307120)

PARTICLE DARK MATTER

Neutrinos From Sun

WIMP Capture In Sun/Earth Via Elastic Scattering Annihilation In Sun/Earth Enhanced Observe Neutrinos Produced In Annihilations

► Dark Matter Candidates

Supersymmetry \rightarrow Neutralino Dark Matter Universal Extra Dimensions \rightarrow Kaluza-Klein Dark Matter

NEUTRALINO DARK MATTER

Neutralino Properties

- -Gaugino-Like: Annihilation to $b\bar{b}$ or $t\bar{t}$ (85-100%)
- -Higgsino-Like: Annihilation to ZZ, W^+W^-
- -No Direct Annihilation To Neutrinos

KALUZA-KLEIN DARK MATTER

Universal Extra Dimensions

-All Particles Propagate In Bulk

-Kaluza-Klein (KK) Towers Appear

-KK Number Analogous to R-Parity \rightarrow Lightest KK State Stable

Lightest Kaluza-Klein Particle

-LKP Likely to be Excitation of B

-Annihilates to $\tau^+\tau^-$ (23%)

-Direct Annihilation to Neutrinos (4%)

D. Hooper, G. Kribs, PRD, hep-ph/0208261

SUPERHEAVY DARK MATTER AND UHE COSMIC RAYS

The UHE Cosmic Ray Problem
 Events Observed Beyond GZK Cutoff
 HiRes and AGASA in Disagreement?!
 Sources of High-Energy Cosmic-Rays Remain Unknown

SUPERHEAVY DARK MATTER AND UHE COSMIC RAYS

Possible Solutions

- -Astrophysical Sources Within 10-50 Mpc Discovered
- -Lorentz Violation
- -Exotic Particles (Strongly Interacting Neutrinos, etc.)
- -Decaying/Annihilating GUT-Scale Relics

► Top-Down Cosmic Ray Sources

-Particles or Topological Defects of $\sim 10^{12}-10^{16}\,{\rm GeV}$ mass -Decay/Annihilation Channels Unknown

C. Barbot and M. Drees, Astro. Part. Phys., hep-ph/0211406

Decaying GUT-Scale Relic

UHE Neutrino Spectrum

Neutrino Rates AMANDA: 0.05-10/yr, AUGER: 0.5-35/yr, \rightarrow IceCube: 1-200/yr

C. Barbot, M. Drees, F. Halzen, D. Hooper, PLB, hep-ph/0205230

SUPERHEAVY DARK MATTER AND UHE COSMIC RAYS

► SUSY In The Sky

GUT-Scale Fragmentation Includes Stable Neutralinos UHE Supersymmetric Particles Smoking Gun For Top-Down Models

C. Barbot, M. Drees, F. Halzen and D. Hooper, PLB, hep-ph/0207133

SUPERHEAVY DARK MATTER AND UHE COSMIC RAYS

► Detecting UHE Neutralinos

Cascade Signatures Similar To Neutrinos Neutralinos Typically Have Smaller Cross Sections \rightarrow Use Earth As A Filter Potentially Observable With EUSO/OWL

C. Barbot, M. Drees, F. Halzen and D. Hooper, PLB, hep-ph/0207133

NEUTRINO PROPERTIES

- ► Neutrino Lifetimes
- ► Absolute Neutrino Masses
- ► Neutrino Mixing Parameters

NEUTRINO DECAY?

Cosmic Neutrino Flavors

At Source $\rightarrow \phi_{\nu_e} : \phi_{\nu_{\mu}} : \phi_{\nu_{\tau}} \simeq 1 : 2 : 0$ After Oscillations $\rightarrow \phi_{\nu_e} : \phi_{\nu_{\mu}} : \phi_{\nu_{\tau}} \simeq 1 : 1 : 1$

Decay Modifies Flavor Ratios

 $\nu_i \to \nu_j + X \text{ or } \nu_i \to \bar{\nu_j} + X$

Unstable	Daughters	Branchings	$\phi_{{ u}_e}:\phi_{{ u}_\mu}:\phi_{{ u}_ au}$
$ u_2, u_3 $	anything	irrelevant	6:1:1
$ u_3$	sterile	irrelevant	2:1:1
$ u_3$	full energy	$B_{3\to 2} = 1$	1.4:1:1
	degraded ($\alpha = 2$)		1.6:1:1
$ u_3$	full energy	$B_{3\to 1} = 1$	2.8:1:1
	degraded ($\alpha = 2$)		2.4:1:1
ν_3	anything	$B_{3\to 1} = 0.5$	2:1:1
		$B_{3\to 2} = 0.5$	

Table 1: Flavor ratios for various decay scenarios.

J. Beacom, N. Bell, D. Hooper, S. Pakvasa, T. Weiler, PRL, hep-ph/0211305

NEUTRINO DECAY?

► Effect of Neutrino Mixing Parameters

J. Beacom, N. Bell, D. Hooper, S. Pakvasa, T. Weiler, PRL, hep-ph/0211305

MEASURING NEUTRINO FLAVOR RATIOS

Experimental Observables

- -Muon Tracks
- -Showers (Hadronic+Electromagnetic)
- -Tau-Unique Events (Double Bang+Lollipop Events)
- Reconstruct Flavor Ratios

 $\nu_{\mu} - \nu_{\tau} \text{ Symmetry}$ Muons/Showers $\rightarrow \phi_{\nu_{\mu}}/\phi_{\nu_{e}}$ Tau-Unique Events Used As Confirmation

Sensitivity to Decay

IceCube ~ 10^7 Times More Sensitive Than Solar Experiments! $\rightarrow \tau_{\nu}/m_{\nu} \gtrsim 10^3 \text{ sec/eV}$

J. Beacom, N. Bell, D. Hooper, S. Pakvasa, T. Weiler, PRL, hep-ph/0307025

NEUTRINO MIXING

Psueo-Dirac States

- -Standard Neutrino Oscillations for $\delta m^2 \lesssim 10^{-12} \, {\rm eV}^2$
- -Neutrinoless Double Beta Decay Highly Suppressed
- -New Oscillation Phenomenology Over 100 Mpc Baselines

J. Beacom, N. Bell, D. Hooper, J. Learned, S. Pakvasa, T. Weiler, PRL, hep-ph/0307151

Sensitivity to Psuedo-Dirac Masses

Performance Reach To $\sim 10^{-20}$ eV² Mass Splittings Far Beyond Conventional Experiments

ABSOLUTE NEUTRINO MASSES

Z-Burst (Weiler) Mechanism

 $\nu_{\text{UHE}} + \nu_{\text{BG}} \rightarrow Z$ (at Resonance) For eV Neutrino Masses, $E_{\nu} \sim 10^{21} \,\text{eV}$ Proposed as Solution to the UHECR Problem

The Future: Ultra-High Energy Neutrino Spectroscopy???

T. Weiler, A. Ringwald, et al., in preparation

Conclusions

Next Generation Experiments

 -AMANDA, RICE Have Seen First Light
 -IceCube, ANTARES, AUGER, ANITA, etc. Soon To Follow
 -Rapid Progress Being Made Experimentally

 Particle Physics Laboratory

-Neutrino Cross Section Measurements
-Neutrino Properties: Decays, Absolute Masses, Mixings
-Particle Dark Matter Searches
-Probe GUT Scale (Top Down Cosmic Ray Models)

Complementary To Colliders

-Take Advantage of Natural Particle Accelerators

-Collider Energies Limited