Was the highest energy cosmic ray a photon?

P. Homola ${ }^{\text {a }}$, M. Rissea,b et al.

${ }^{\text {a }}$ Institute of Nuclear Physics PAS, Kraków, Poland
${ }^{b}$ Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany
contents:

- studies on photons as UHECR: motivation
- analysis tools for identification of photons
- the Fly's Eye highest energy cosmic ray: a photon?
- applications to the future UHECR data (AUGER)

Studies on photons as UHECR: motivation

- if UHE photons reach Earth
\rightarrow indication of an exotic "top-down" model of cosmic ray origin (e.g. annihilation of topological defects)
- if no UHE photons in cosmic ray flux
\rightarrow indication for an acceleration scenario
- identification of photon primaries, measurment of the UHE photon flux, or specifying the upper limit for it \rightarrow excellent test for the models of cosmic-ray origin

The highest energy shower : Fly's Eye, Utah, 15 Oct 1991

$$
\begin{array}{lr}
\text { Energy }\left[10^{18} \mathrm{eV}\right]: & 320{ }_{-94}^{+92} \\
\mathrm{X}_{\text {max }}\left[\mathrm{g} / \mathrm{cm}^{2}\right]: & 815_{-53}^{+60} \\
\text { zenith angle [deg]: } & 43.9_{-1.3}^{+1.8}{ }_{-1.3}^{+1.2} \\
\text { azimuth angle [deg]: } & 31.7_{-6.1}^{+4.2}
\end{array}
$$

Bird et al., ApJ 441 (1995) 144:

- final reconstruction
- best fit: mid size nucleus
- any hadron OK

Halzen et al., Astropart. Phys. 3 (1995) 151 :

- "event not initiated by γ "

this work:

- PRESHOWER + CORSIKA simulations
- photon primary not excluded

Identification of photons as UHECR: how to proceed?

- Simulations of UHE photons before they enter the Earth's atmosphere: accounting for creation of preshowers
- Monte-Carlo extensive air shower (EAS) simulations including the Landau-Pomeranchuk-Migdal (LPM) effect
- Search for features of EAS characteristic only for UHE photons as cosmic ray primaries
- Analysis of real data (e.g. collected by Pierre Auger Experiment - good statistics at energies $>10^{20} \mathrm{eV}$ is expected in next few years)

Preshower calculation: important points

details: astro-ph/0311442

- Exact model of the geomagnetic field (here: IGRF Model)
\rightarrow UHE gamma conversion: $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
\rightarrow Synchrotron radiation: $\mathrm{e}^{+/-} \rightarrow \mathrm{\gamma}^{+/-}$
- Negligible effects:
- deflection of $\mathrm{e}^{+/-}$trajectories in B,
- γ conversion in Sun's magnetosphere,
- influence of solar wind,
- time delay of particles with velocities $<\mathrm{c}$.

Good approximation: preshower particles have the same trajectory and arrival time at the top of atmosphere.

Note: preshower effect is dependent on B_{\perp} and E_{0}.

Preshower effect: schematic view

PRESHOWER functionality: Fly's Eye \& Auger North

Preshowers at the top of atmosphere above Utah:

$\boldsymbol{E}_{\boldsymbol{0}}$ [eV]	arrival direction	fraction of converted	$\left\langle\boldsymbol{N}_{\boldsymbol{p a r t}}\right\rangle$	$\left\langle\boldsymbol{N}_{\boldsymbol{e}+\boldsymbol{e}-}\right\rangle$
5×10^{19}	strong B_{\perp}	$984 / 1000$	718 ± 296	2.0 ± 0.3
10^{20}	weak B_{\perp}	$0 / 1000$	1	0
10^{20}	strong B_{\perp}	$1000 / 1000$	1304 ± 256	2.3 ± 0.7
$\mathrm{FE} \rightarrow 3 \times 10^{20}$	$\theta=43.9^{\circ}, \varphi=31.7^{\circ}$	$1000 / 1000$	1434 ± 332	4.7 ± 1.6
10^{21}	weak B_{\perp}	$918 / 1000$	170 ± 72	2.1 ± 0.3
10^{21}	strong B_{\perp}	$1000 / 1000$	9865 ± 1224	20.9 ± 3.5

weak $B_{\perp}: \theta=24^{\circ}, \varphi=255^{\circ}(\|$ to local B$) ;$ strong $B_{\perp}: \theta=66^{\circ}, \varphi=75^{\circ}(\perp$ to local $\mathbf{B})$
NOTE: gamma conversion probability and $N_{p a r t}$ depend on the arrival direction and \boldsymbol{E}_{0}.
\rightarrow EAS properties are expected to depend on arrival direction.

PRESHOWER functionality: Fly's Eye \& Auger North

Preshowers at the top of atmosphere above Utah:

$\boldsymbol{E}_{\mathbf{0}}$ [eV]	arrival direction	fraction of converted	$\left\langle\boldsymbol{N}_{\text {part }}\right\rangle$	$\left\langle\boldsymbol{N}_{\boldsymbol{e}+\boldsymbol{e}-}\right\rangle$
5×10^{19}	strong B_{\perp}	$984 / 1000$	718 ± 296	2.0 ± 0.3
10^{20}	weak B_{\perp}	$0 / 1000$	1	0
10^{20}	strong B $_{\perp}$	$1000 / 1000$	1304 ± 256	2.3 ± 0.7
$\mathrm{FE} \leftrightarrows 3 \times 10^{20}$	$\theta=43.9^{\circ}, \varphi=31.7^{\circ}$	$1000 / 1000$	1434 ± 332	4.7 ± 1.6
10^{21}	weak B_{\perp}	$918 / 1000$	170 ± 72	2.1 ± 0.3
10^{21}	strong B $_{\perp}$	$1000 / 1000$	9865 ± 1224	20.9 ± 3.5

weak $B_{\perp}: \theta=24^{\circ}, \varphi=255^{\circ}(\|$ to local B$) ;$ strong $B_{\perp}: \theta=66^{\circ}, \varphi=75^{\circ}(\perp$ to local $\mathbf{B})$
NOTE: gamma conversion probability and $N_{p a r t}$ depend on the arrival direction and \boldsymbol{E}_{0}.
\rightarrow EAS properties are expected to depend on arrival direction.

PRESHOWER functionality: Fly's Eye \& Auger North

Preshowers at the top of atmosphere above Utah:

$\boldsymbol{E}_{\mathbf{0}}$ [eV]	arrival direction	fraction of converted	$\left\langle\boldsymbol{N}_{\text {part }}\right\rangle$	$\left\langle\boldsymbol{N}_{\boldsymbol{e}+\boldsymbol{e}-}\right\rangle$
5×10^{19}	strong B_{\perp}	$984 / 1000$	718 ± 296	2.0 ± 0.3
10^{20}	weak B_{\perp}	$0 / 1000$	1	0
10^{20}	strong B $_{\perp}$	$1000 / 1000$	1304 ± 256	2.3 ± 0.7
$\mathrm{FE} \leftrightarrows 3 \times 10^{20}$	$\theta=43.9^{\circ}, \varphi=31.7^{\circ}$	$1000 / 1000$	1434 ± 332	4.7 ± 1.6
10^{21}	weak B_{\perp}	$918 / 1000$	170 ± 72	2.1 ± 0.3
10^{21}	strong B $_{\perp}$	$1000 / 1000$	9865 ± 1224	20.9 ± 3.5

weak $B_{\perp}: \theta=24^{\circ}, \varphi=255^{\circ}(\|$ to local B$) ;$ strong $B_{\perp}: \theta=66^{\circ}, \varphi=75^{\circ}(\perp$ to local $\mathbf{B})$
NOTE: gamma conversion probability and $N_{p a r t}$ depend on the arrival direction and \boldsymbol{E}_{0}.
\rightarrow EAS properties are expected to depend on arrival direction.

Complete simulation tool: PRESHOWER + CORSIKA

PRESHOWER:

photon propagation and the preshower effect above the atmosphere Returns energies and types of all the preshower particles at the top of atmosphere (112 km); all the particles have the same trajectory and arrival time.

CORSIKA:

LPM effect included; hadronic interactions: QGSJET 01 and SIBYLL 2.1

Each preshower particle initiates an atmospheric subshower, final EAS is a superposition of all the subshowers induced by preshower particles.

Simulations

Parameters:

Utah, $E_{0}=3 \times 10^{20} \mathrm{eV}, \theta=43.9^{\circ}, \varphi=31.7^{\circ}$, different primaries A_{0}
\rightarrow only longitudinal profile studied

CORSIKA:
1000 profiles for p, C and Fe (QGSJET $01 \&$ SIBYLL 2.1)
PRESHOWER+CORSIKA:
1000 profiles for γ
\rightarrow compare simulated profiles with data
\rightarrow try to conclude: are any A_{0} (dis)favoured?

$X_{\text {max }}$ - primary hadrons

\rightarrow within experimental uncertainties and shower fluctuations:
every hadron-model combination possible

$X_{\text {max }}$ - primary photons

Expected:
$<X_{\max }>=937 \pm 26 \mathrm{~g} / \mathrm{cm}^{2}$

Measured:
$X_{\text {max }}=815_{-53}^{+60} \mathrm{~g} / \mathrm{cm}^{2}$

$\boldsymbol{X}_{\text {max }}$ - primary photon probability $\mathbf{P}(\gamma)$

$$
X_{\max }=815_{-53}^{+60} \quad \mathrm{~g} / \mathrm{cm}^{2} \quad \text { consistent with photon? }
$$

\Rightarrow average $X_{\max }+$ experimental statistical uncertainty:
$\mathrm{P}\left(<X_{\max }>=937, \sigma_{\text {stat }}=45\right)=0.7 \%$
\rightarrow shower fluctuations, $P=\frac{1}{n} \sum P_{i}$:

$$
\mathrm{P}\left(X_{\max } \text {-distr., } \sigma_{s t a t}=45\right)=1.5 \%
$$

\rightarrow systematic uncertainty:

$$
\mathrm{P}\left(X_{\max } \text {-distr., } \sigma=\sqrt{\sigma_{s y s t}^{2}+\sigma_{s t a t}^{2}}=60\right)=5.8 \%
$$

\rightarrow within experimental uncertainties and shower fluctuations:

$$
\mathrm{P}(\gamma) \sim \text { few } \% \text { : small, but non-negligible! }
$$

Complete profile: safe conclusion

Sensitivity to A_{0} :

$$
\begin{gathered}
X_{\max }-\text { yes } \\
N_{\max }-\text { no }
\end{gathered}
$$

profile shape - no

safe conclusion:

\Rightarrow any hadron/model combination consistent with data,
\rightarrow primary photon hypothesis not favoured by data, but not excluded!

PRESHOWER + CORSIKA: applications for AUGER

profiles of photon-induced EAS for conditions of Malargüe (Auger South):

$E_{0}[\mathrm{eV}]$	arrival direction	fraction of converted	$\begin{gathered} \left\langle X_{\max }\right\rangle \\ {\left[\mathrm{g} / \mathrm{cm}^{2}\right]} \end{gathered}$	$\begin{gathered} \left\langle R M S\left(X_{\max }\right)\right\rangle \\ {\left[g / \mathrm{cm}^{2}\right]} \end{gathered}$
5×10^{19}	strong B ${ }_{\perp}$	$1 / 50$	1065	90
10^{20}	weak B_{\perp}	$1 / 100$	1225	175
10^{20}	strong B ${ }_{\perp}$	$91 / 100$	940	85
10^{21}	weak B_{\perp}	$100 / 100$	1040	40
10^{21}	strong B_{\perp}	100 / 100	965	20

strong $\mathrm{B}_{\perp}: \theta=53^{\circ}, \varphi=267^{\circ}$; weak $\mathrm{B}_{\perp}: \theta=53^{\circ}, \varphi=87^{\circ}$

$$
\text { proton: } \mathrm{E}_{0}=10^{20} \mathrm{eV} \rightarrow X_{\max }=820 \pm 60 \mathrm{~g} / \mathrm{cm}^{2}
$$

PRESHOWER + CORSIKA: applications for AUGER

profiles of photon-induced EAS for conditions of Malargüe (Auger South):

$E_{0}[\mathrm{eV}]$	arrival direction	fraction of converted	$\begin{gathered} \left\langle X_{\max }\right\rangle \\ {\left[\mathrm{g} / \mathrm{cm}^{2}\right]} \end{gathered}$	$\begin{gathered} \left\langle R M S\left(X_{\max }\right)\right\rangle \\ {\left[g / \mathrm{cm}^{2}\right]} \end{gathered}$
5×10^{19}	strong B ${ }_{\perp}$	$1 / 50$	1065	90
10^{20}	weak B ${ }_{\perp}$	$1 / 100$	1225	175
10^{20}	strong B ${ }_{\perp}$	$91 / 100$	940	85
10^{21}	weak B_{\perp}	100 / 100	1040	40
10^{21}	strong B_{\perp}	100 / 100	965	20

$$
\operatorname{strong} B_{\perp}: \theta=53^{\circ}, \varphi=267^{\circ} ; \text { weak } B_{\perp}: \theta=53^{\circ}, \varphi=87^{\circ}
$$

$$
\text { proton: } \mathrm{E}_{0}=10^{20} \mathrm{eV} \rightarrow X_{\max }=820 \pm 60 \mathrm{~g} / \mathrm{cm}^{2}
$$

- very deep $X_{\text {max }}$ and large $X_{\max }$ fluctuations if photon unconverted

PRESHOWER + CORSIKA: applications for AUGER

profiles of photon-induced EAS for conditions of Malargüe (Auger South):

$E_{0}[\mathrm{eV}]$	arrival direction	fraction of converted	$\begin{gathered} \left\langle X_{\max }\right\rangle \\ {\left[g / \mathrm{cm}^{2}\right]} \end{gathered}$	$\begin{gathered} \left\langle R M S\left(X_{\max }\right)\right\rangle \\ {\left[g / \mathrm{cm}^{2}\right]} \end{gathered}$
5×10^{19}	strong B_{\perp}	$1 / 50$	1065	90
10^{20}	weak B_{\perp}	$1 / 100$	1225	175
10^{20}	strong B_{\perp}	$91 / 100$	940	85
10^{21}	weak B ${ }_{\perp}$	100 / 100	1040	40
10^{21}	strong B_{\perp}	100 / 100	965	20

$$
\operatorname{strong} B_{\perp}: \theta=53^{\circ}, \varphi=267^{\circ} ; \text { weak } B_{\perp}: \theta=53^{\circ}, \varphi=87^{\circ}
$$

$$
\text { proton: } \mathrm{E}_{0}=10^{20} \mathrm{eV} \rightarrow X_{\max }=820 \pm 60 \mathrm{~g} / \mathrm{cm}^{2}
$$

- directional anisotropy in $X_{\max }$ and $R M S\left(X_{\max }\right)$

PRESHOWER + CORSIKA: applications for AUGER

profiles of photon-induced EAS for conditions of Malargüe (Auger South):

$E_{0}[\mathrm{eV}]$	arrival direction	fraction of converted	$\begin{gathered} \left\langle X_{\max }\right\rangle \\ {\left[g / \mathrm{cm}^{2}\right]} \end{gathered}$	$\begin{gathered} \left\langle\boldsymbol{R M S}\left(X_{\max }\right)\right\rangle \\ {\left[g / \boldsymbol{c m}^{2}\right]} \end{gathered}$
5×10^{19}	strong B ${ }_{\perp}$	$1 / 50$	1065	90
10^{20}	weak B_{\perp}	$1 / 100$	1225	175
10^{20}	strong B_{\perp}	$91 / 100$	940	85
10^{21}	weak B_{\perp}	$100 / 100$	1040	40
10^{21}	strong B_{\perp}	100 / 100	965	20

$$
\text { strong } B_{\perp}: \theta=53^{\circ}, \varphi=267^{\circ} ; \text { weak } B_{\perp}: \theta=53^{\circ}, \varphi=87^{\circ}
$$

$$
\text { proton: } \mathrm{E}_{0}=10^{20} \mathrm{eV} \rightarrow X_{\max }=820 \pm 60 \mathrm{~g} / \mathrm{cm}^{2}
$$

- small or negative elongation rates $d X_{\max } / d \log E$

Conclusions for Pierre Auger Experiment

good signatures of primary photon:

- very deep $X_{\text {max }}$ and large $X_{\max }$ fluctuations if photon unconverted
- directional anisotropy in $X_{\max }$ and $R M S\left(X_{\max }\right)$
- small or negative elongation rates $d X_{\max } / d \log E$
estimate of Auger-FD sensitivity to photon flux (few years' data):
- assume around 40 events at $\mathrm{E}_{0}>10^{20} \mathrm{eV}$, no γ detected, primary photon probability $\mathrm{P}(\gamma) \cong 3 \%$ for each event
- hence upper limit of γ flux in cosmic rays $\sim 10 \%$ (99% c.l.)
\rightarrow serious constraint for exotic CR models!

Identification of photons as UHECR seems possible for AUGER!

SUMMARY and OUTLOOK

Was the highest energy cosmic ray a photon? Probably not, but this hypothesis cannot be excluded.

We are ready to look for photons in the forthcoming ultra-high energy data.

