Was the highest energy cosmic ray a photon?

P. Homola^a, M. Risse^{a,b} et al.

^a Institute of Nuclear Physics PAS, Kraków, Poland ^b Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany

contents:

- studies on photons as UHECR: motivation
- analysis tools for identification of photons
- the Fly's Eye highest energy cosmic ray: a photon?
- applications to the future UHECR data (AUGER)

Studies on photons as UHECR: motivation

- if UHE photons reach Earth
 - \rightarrow indication of an exotic "top-down" model of cosmic ray origin (e.g. annihilation of topological defects)
- if no UHE photons in cosmic ray flux
 - \rightarrow indication for an acceleration scenario
- identification of photon primaries, measurment of the UHE photon flux, or specifying the upper limit for it
 - \rightarrow excellent test for the models of cosmic-ray origin

The highest energy shower : Fly's Eye, Utah, 15 Oct 1991

Identification of photons as UHECR: how to proceed?

- Simulations of UHE photons before they enter the Earth's atmosphere: accounting for creation of preshowers
- Monte-Carlo extensive air shower (EAS) simulations including the Landau-Pomeranchuk-Migdal (LPM) effect
- Search for features of EAS characteristic only for UHE photons as cosmic ray primaries
- Analysis of real data (e.g. collected by Pierre Auger Experiment – good statistics at energies > 10²⁰ eV is expected in next few years)

Preshower calculation: important points

details: astro-ph/0311442

- Exact model of the geomagnetic field (here: IGRF Model)
- ► UHE gamma conversion: $\gamma \rightarrow e^+e^-$
- Synchrotron radiation: $e^{+/-} \rightarrow \gamma e^{+/-}$
- Negligible effects:
 - deflection of e^{+/-} trajectories in B,
 - γ conversion in Sun's magnetosphere,
 - influence of solar wind,
 - time delay of particles with velocities < c.
- Good approximation: preshower particles have the same trajectory and arrival time at the top of atmosphere.

Preshower effect: schematic view

PRESHOWER functionality: Fly's Eye & Auger North

Preshowers at the top of atmosphere above Utah:

	E ₀ [eV]	arrival direction	fraction of converted	$\langle \hspace{.1cm} \textit{N}_{part} \hspace{.1cm} angle$	$\langle \textit{N}_{\textit{e+e-}} angle$
	5×10 ¹⁹	strong \mathbf{B}_{\perp}	984 / 1000	718 ± 296	2.0 ± 0.3
	1020	weak B_{\perp}	0 / 1000	1	0
	10 ²⁰	strong \mathbf{B}_{\perp}	1000 / 1000	1304 ± 256	2.3 ± 0.7
FΕ	→3×10 ²⁰	$\theta = 43.9^{\circ}, \varphi = 31.7^{\circ}$	1000 / 1000	1434 ± 332	4.7 ± 1.6
	10 ²¹	weak B_{\perp}	918 / 1000	170 ± 72	2.1 ± 0.3
	1021	strong \mathbf{B}_{\perp}	1000 / 1000	9865 ± 1224	20.9 ± 3.5

weak $\mathbf{B}_{\perp}: \theta = 24^{\circ}, \varphi = 255^{\circ}$ (|| to local **B**); strong $\mathbf{B}_{\perp}: \theta = 66^{\circ}, \varphi = 75^{\circ}$ (\perp to local **B**)

NOTE: gamma conversion probability and N_{part} depend on the arrival direction and E_{q} .

→ EAS properties are expected to depend on arrival direction.

PRESHOWER functionality: Fly's Eye & Auger North

Preshowers at the top of atmosphere above Utah:

	E ₀ [eV]	arrival direction	fraction of converted	$\langle \hspace{.1cm} N_{part} \hspace{.1cm} angle$	$\langle \pmb{N_{e^+e^-}} angle$
	5×10 ¹⁹	strong \mathbf{B}_{\perp}	984 / 1000	718 ± 296	2.0 ± 0.3
	10 ²⁰	weak B_{\perp}	0 / 1000	1	0
	10 ²⁰	strong \mathbf{B}_{\perp}	1000 / 1000	1304 ± 256	2.3 ± 0.7
Έ	3×10^{20}	$\theta = 43.9^{\circ}, \varphi = 31.7^{\circ}$	1000 / 1000	1434 ± 332	4.7 ± 1.6
	1021	weak B_{\perp}	918 / 1000	170 ± 72	2.1 ± 0.3
	10 ²¹	strong \mathbf{B}_{\perp}	1000 / 1000	9865 ± 1224	20.9 ± 3.5

weak $\mathbf{B}_{\perp}: \theta = 24^{\circ}, \varphi = 255^{\circ}$ (|| to local **B**); strong $\mathbf{B}_{\perp}: \theta = 66^{\circ}, \varphi = 75^{\circ}$ (\perp to local **B**)

NOTE: gamma conversion probability and N_{part} depend on the arrival direction and E_{q} .

→ EAS properties are expected to depend on arrival direction.

PRESHOWER functionality: Fly's Eye & Auger North

Preshowers at the top of atmosphere above Utah:

	E ₀ [eV]	arrival direction	fraction of converted	$\langle \ N_{part} \ angle$	$\langle \pmb{N_{e^+e^-}} angle$
	5×10 ¹⁹	strong \mathbf{B}_{\perp}	984 / 1000	718 ± 296	2.0 ± 0.3
	1020	weak B_{\perp}	0 / 1000	1	0
	10 ²⁰	strong \mathbf{B}_{\perp}	1000 / 1000	1304 ± 256	2.3 ± 0.7
Έ	→3×10 ²⁰	$\theta = 43.9^{\circ}, \varphi = 31.7^{\circ}$	1000 / 1000	1434 ± 332	4.7 ± 1.6
	1021	weak B_{\perp}	918 / 1000	170 ± 72	2.1 ± 0.3
	1021	strong \mathbf{B}_{\perp}	1000 / 1000	9865 ± 1224	20.9 ± 3.5

weak $\mathbf{B}_{\perp}: \theta = 24^{\circ}, \varphi = 255^{\circ}$ (|| to local **B**); strong $\mathbf{B}_{\perp}: \theta = 66^{\circ}, \varphi = 75^{\circ}$ (\perp to local **B**)

NOTE: gamma conversion probability and N_{part} depend on the arrival direction and E_{q} .

→ EAS properties are expected to depend on arrival direction.

Complete simulation tool: PRESHOWER + CORSIKA

PRESHOWER:

photon propagation and the preshower effect above the atmosphere

Returns energies and types of all the preshower particles at the top of atmosphere (112 km); all the particles have the same trajectory and arrival time.

CORSIKA:

LPM effect included; hadronic interactions: QGSJET 01 and SIBYLL 2.1

Each preshower particle initiates an atmospheric subshower, final EAS is a superposition of all the subshowers induced by preshower particles.

Simulations

Parameters: Utah, $E_0 = 3 \times 10^{20} \text{ eV}$, $\theta = 43.9^\circ$, $\varphi = 31.7^\circ$, different primaries A_0

➔ only longitudinal profile studied

```
CORSIKA: 1000 profiles for p, C and Fe (QGSJET 01 & SIBYLL 2.1)
```

```
PRESHOWER+CORSIKA: 1000 profiles for \gamma
```

compare simulated profiles with data
try to conclude: are any A₀ (dis) favoured?

X_{max} – primary hadrons

→ within experimental uncertainties and shower fluctuations:

every hadron-model combination possible

X_{max} – primary photons

 $< X_{max} > = 937 \pm 26 \text{ g/cm}^2$

 $X_{max} = 815_{-53}^{+60} g/cm^2$

X_{max} – primary photon probability P(γ)

$$X_{max} = 815_{-53}^{+60} \text{ g/cm}^2 \text{ consistent with photon ?}$$

$$\Rightarrow \text{ average } X_{max} + \text{ experimental statistical uncertainty:}$$

$$P(< X_{max} > = 937, \sigma_{stat} = 45) = 0.7\%$$

$$\Rightarrow \text{ shower fluctuations, } P = \frac{1}{n} \sum P_i :$$

$$P(X_{max} - \text{distr.}, \sigma_{stat} = 45) = 1.5\%$$

$$\Rightarrow \text{ systematic uncertainty:}$$

$$P(X_{max} - \text{distr.}, \sigma = \sqrt{\sigma_{syst}^2 + \sigma_{stat}^2} = 60) = 5.8\%$$

→ within experimental uncertainties and shower fluctuations:

 $P(\gamma) \sim \text{few \%}$: small, but non-negligible!

Complete profile: safe conclusion

safe conclusion:

→ any hadron/model combination consistent with data,

primary photon hypothesis not favoured by data, but not excluded !

E ₀ [eV]	arrival direction	fraction of converted	$\langle X_{max} \rangle$ [g/cm ²]	<pre> { RMS(X_{max}) } [g/cm²] </pre>
5×10 ¹⁹	strong \mathbf{B}_{\perp}	1 / 50	1065	90
10 ²⁰	weak B_{\perp}	1 / 100	1225	175
10 ²⁰	strong \mathbf{B}_{\perp}	91 / 100	940	85
10 ²¹	weak B_{\perp}	100 / 100	1040	40
10 ²¹	strong \mathbf{B}_{\perp}	100 / 100	965	20

strong \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 267^{\circ}$; weak \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 87^{\circ}$

proton: $E_0 = 10^{20} \text{ eV} \rightarrow X_{max} = 820 \pm 60 \text{ g/cm}^2$

$E_{\theta} [eV]$	arrival direction	fraction of converted	$\langle X_{max} \rangle$ [g/cm ²]	<pre> { RMS(X_{max}) } [g/cm²] </pre>
5×10 ¹⁹	strong \mathbf{B}_{\perp}	1 / 50	1065	90
10 ²⁰	weak B_{\perp}	1 / 100	1225	175
10 ²⁰	strong \mathbf{B}_{\perp}	91 / 100	940	85
10 ²¹	weak B_{\perp}	100 / 100	1040	40
1021	strong \mathbf{B}_{\perp}	100 / 100	965	20

strong \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 267^{\circ}$; weak \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 87^{\circ}$

proton:
$$E_0 = 10^{20} \text{ eV} \rightarrow X_{max} = 820 \pm 60 \text{ g/cm}^2$$

• very deep X_{max} and large X_{max} fluctuations if photon unconverted

$E_{\theta} [eV]$	arrival direction	fraction of converted	$\langle X_{max} \rangle$ [g/cm ²]	<pre> { RMS(X_{max}) } [g/cm²] </pre>
5×10 ¹⁹	strong \mathbf{B}_{\perp}	1 / 50	1065	90
10 ²⁰	weak B_{\perp}	1 / 100	1225	175
10 ²⁰	strong \mathbf{B}_{\perp}	91 / 100	940	85
10 ²¹	weak B_{\perp}	100 / 100	1040	40
10 ²¹	strong \mathbf{B}_{\perp}	100 / 100	965	20

strong \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 267^{\circ}$; weak \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 87^{\circ}$

proton:
$$E_0 = 10^{20} \text{ eV} \rightarrow X_{max} = 820 \pm 60 \text{ g/cm}^2$$

• directional anisotropy in X_{max} and $RMS(X_{max})$

$E_{\theta} [eV]$	arrival direction	fraction of converted	$\langle X_{max} \rangle$ [g/cm ²]	<pre> { RMS(X_{max}) } [g/cm²] </pre>
5×10 ¹⁹	strong \mathbf{B}_{\perp}	1 / 50	1065	90
10 ²⁰	weak B_{\perp}	1 / 100	1225	175
10 ²⁰	strong \mathbf{B}_{\perp}	91 / 100	940	85
10 ²¹	weak B_{\perp}	100 / 100	1040	40
10 ²¹	strong \mathbf{B}_{\perp}	100 / 100	965	20

strong \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 267^{\circ}$; weak \mathbf{B}_{\perp} : $\theta = 53^{\circ}, \varphi = 87^{\circ}$

proton:
$$E_0 = 10^{20} \text{ eV} \rightarrow X_{max} = 820 \pm 60 \text{ g/cm}^2$$

• small or negative elongation rates dX_{max} / dlogE

Conclusions for Pierre Auger Experiment

good signatures of primary photon:

- very deep X_{max} and large X_{max} fluctuations if photon unconverted
- directional anisotropy in X_{max} and $RMS(X_{max})$
- small or negative elongation rates $dX_{max} / dlogE$

estimate of Auger-FD sensitivity to photon flux (few years' data):

- assume around 40 events at $E_0 > 10^{20}$ eV, no γ detected, primary photon probability $P(\gamma) \approx 3\%$ for each event
- hence upper limit of γ flux in cosmic rays ~ 10% (99% c.l.)
- → <u>serious constraint for exotic CR models</u>!

Identification of photons as UHECR seems possible for AUGER !

SUMMARY and OUTLOOK

Was the highest energy cosmic ray a photon? Probably not, but this hypothesis cannot be excluded.

We are ready to look for photons in the forthcoming ultra-high energy data.